Dropping Impact Characteristics Analysis of a Cubic Nonlinear Packaging System with a Cantilever Beam Type Elastic Critical Component with Concentrated Tip Mass

A mathematical model for a cubic nonlinear packaging system with a cantilever beam type critical component with concentrated tip mass is proposed. The finite element method and the implicit finite difference method together with the Rung-Kutta method are applied to study the dropping impact dynamics...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng Hao, An-Jun Chen
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2015/602984
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mathematical model for a cubic nonlinear packaging system with a cantilever beam type critical component with concentrated tip mass is proposed. The finite element method and the implicit finite difference method together with the Rung-Kutta method are applied to study the dropping impact dynamics of the critical component and the effect of system parameters, such as the value of the concentrated tip mass and the frequency of the main component, is discussed. The results show that the relative displacement and acceleration change remarkably with the length of the cantilever beam, and the maximum internal stress occurs at the joint end of the critical component. With the increase of the value of the concentrated tip mass and/or a higher frequency of the main component, the amplitudes of the responses increase obviously.
ISSN:1070-9622
1875-9203