Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody

Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initi...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuyao Zhang, Li Qian, Qian Zhang, Yu Li, Yu Liu, Dechen Jiang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/15/1/47
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker. Using the optimized protocol, the prepared immunosensor exhibits a wide-ranging linear response to the model antibody (glutamate decarboxylase antibody) ranging from 10 pg/mL to 10 ng/mL. The detection limit is almost two orders lower than the value using the classic enzyme-linked immunosorbent assay, which offers a new design to enhance ECL emissions and the resultant analytical performance.
ISSN:2079-6374