Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk
Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawle...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2024-12-01
|
| Series: | Future Science OA |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.2144/fsoa-2023-0107 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy. |
|---|---|
| ISSN: | 2056-5623 |