DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {27, 20, 7; 1, 4, 21} DOES NOT EXIST

In the class of distance-regular graphs of diameter 3 there are 5 intersection arrays of graphs with at most 28 vertices and noninteger eigenvalue. These arrays are \(\{18,14,5;1,2,14\}\), \(\{18,15,9;1,1,10\}\), \(\{21,16,10;1,2,12\}\), \(\{24,21,3;1,3,18\}\), and \(\{27,20,7;1,4,21\}\). Automorphi...

Full description

Saved in:
Bibliographic Details
Main Authors: Konstantin S. Efimov, Alexander A. Makhnev
Format: Article
Language:English
Published: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 2020-12-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/292
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the class of distance-regular graphs of diameter 3 there are 5 intersection arrays of graphs with at most 28 vertices and noninteger eigenvalue. These arrays are \(\{18,14,5;1,2,14\}\), \(\{18,15,9;1,1,10\}\), \(\{21,16,10;1,2,12\}\), \(\{24,21,3;1,3,18\}\), and \(\{27,20,7;1,4,21\}\). Automorphisms of graphs with intersection arrays \(\{18,15,9;1,1,10\}\) and \(\{24,21,3;1,3,18\}\) were found earlier by A.A. Makhnev and D.V. Paduchikh. In this paper, it is proved that a graph with the intersection array \(\{27,20,7;1,4,21\}\) does not exist.
ISSN:2414-3952