Control of Near-Grazing Dynamics in the Two-Degree-of-Freedom Vibroimpact System with Symmetrical Constraints
The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2020/7893451 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |