Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator

In this paper, we investigate the existence and uniqueness of solutions for the viscous Burgers’ equation for the isothermal flow of power-law non-Newtonian fluids <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><m...

Full description

Saved in:
Bibliographic Details
Main Authors: Lyailya Zhapsarbayeva, Dongming Wei, Bagyzhan Bagymkyzy
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/5/708
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850227630213693440
author Lyailya Zhapsarbayeva
Dongming Wei
Bagyzhan Bagymkyzy
author_facet Lyailya Zhapsarbayeva
Dongming Wei
Bagyzhan Bagymkyzy
author_sort Lyailya Zhapsarbayeva
collection DOAJ
description In this paper, we investigate the existence and uniqueness of solutions for the viscous Burgers’ equation for the isothermal flow of power-law non-Newtonian fluids <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mo>∂</mo><mi>t</mi></msub><mi>u</mi><mo>+</mo><mi>u</mi><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>μ</mi><msub><mo>∂</mo><mi>x</mi></msub><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="|" close="|"><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi></mfenced><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> augmented with the initial condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>x</mi><mo><</mo><mi>L</mi></mrow></semantics></math></inline-formula>, and the boundary condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>L</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is the density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> the viscosity, <i>u</i> the velocity of the fluid, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We show that this initial boundary problem has an unique solution in the Buchner space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><msub><mi>W</mi><mn>0</mn></msub></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mfenced></mrow></semantics></math></inline-formula> for the given set of conditions. Moreover, numerical solutions to the problem are constructed by applying the modeling and simulation package COMSOL Multiphysics 6.0 at small and large Reynolds numbers to show the images of the solutions.
format Article
id doaj-art-89083ee19fdb481099cc2cb4759801f1
institution OA Journals
issn 2227-7390
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-89083ee19fdb481099cc2cb4759801f12025-08-20T02:04:48ZengMDPI AGMathematics2227-73902025-02-0113570810.3390/math13050708Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace OperatorLyailya Zhapsarbayeva0Dongming Wei1Bagyzhan Bagymkyzy2Department of Fundamental Mathematics, L.N. Gumilyov Eurasian National University, 2, Satbaev St., Astana 010000, KazakhstanDepartment of Mathematics, Nazarbayev University, 53, Kabanbay batyr Ave., Astana 010000, KazakhstanDepartment of Fundamental Mathematics, L.N. Gumilyov Eurasian National University, 2, Satbaev St., Astana 010000, KazakhstanIn this paper, we investigate the existence and uniqueness of solutions for the viscous Burgers’ equation for the isothermal flow of power-law non-Newtonian fluids <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mo>∂</mo><mi>t</mi></msub><mi>u</mi><mo>+</mo><mi>u</mi><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>μ</mi><msub><mo>∂</mo><mi>x</mi></msub><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="|" close="|"><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi></mfenced><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mo>∂</mo><mi>x</mi></msub><mi>u</mi></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> augmented with the initial condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>u</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>x</mi><mo><</mo><mi>L</mi></mrow></semantics></math></inline-formula>, and the boundary condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>L</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula> is the density, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> the viscosity, <i>u</i> the velocity of the fluid, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We show that this initial boundary problem has an unique solution in the Buchner space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mfenced separators="" open="(" close=")"><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mrow><msub><mi>W</mi><mn>0</mn></msub></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mfenced></mrow></semantics></math></inline-formula> for the given set of conditions. Moreover, numerical solutions to the problem are constructed by applying the modeling and simulation package COMSOL Multiphysics 6.0 at small and large Reynolds numbers to show the images of the solutions.https://www.mdpi.com/2227-7390/13/5/708<i>p</i>-Laplacianpower-law non-Newtonian fluid modelexistence and uniquenessBurgers’ equationBochner spaceSobolev space
spellingShingle Lyailya Zhapsarbayeva
Dongming Wei
Bagyzhan Bagymkyzy
Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
Mathematics
<i>p</i>-Laplacian
power-law non-Newtonian fluid model
existence and uniqueness
Burgers’ equation
Bochner space
Sobolev space
title Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
title_full Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
title_fullStr Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
title_full_unstemmed Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
title_short Existence and Uniqueness of the Viscous Burgers’ Equation with the p-Laplace Operator
title_sort existence and uniqueness of the viscous burgers equation with the p laplace operator
topic <i>p</i>-Laplacian
power-law non-Newtonian fluid model
existence and uniqueness
Burgers’ equation
Bochner space
Sobolev space
url https://www.mdpi.com/2227-7390/13/5/708
work_keys_str_mv AT lyailyazhapsarbayeva existenceanduniquenessoftheviscousburgersequationwiththeplaplaceoperator
AT dongmingwei existenceanduniquenessoftheviscousburgersequationwiththeplaplaceoperator
AT bagyzhanbagymkyzy existenceanduniquenessoftheviscousburgersequationwiththeplaplaceoperator