Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials

Abstract Metal nanoparticles (NPs) immobilized on molecularly modified supports form versatile hybrid materials, offering extensive combinatorial flexibility and synergistic interactions between the organic and inorganic components, making them ideal for applications such as catalysis, and sensing....

Full description

Saved in:
Bibliographic Details
Main Authors: Jacob Johny, Savarithai Jenani Louis Anandaraj, Carolin Mehrmann, Xin Wei, Ankita Das, Niklas Scheer, Yuke Yang, Walid Hetaba, Petra Ebbinghaus, Ulrich Simon, Rüdiger‐A. Eichel, Florian Hausen, Holger Uphoff, Hans‐Christoph Mertins, R. Kramer Campen, Yujin Tong, Martin Rabe, Walter Leitner, Alexis Bordet, Marc Frederic Tesch
Format: Article
Language:English
Published: Wiley-VCH 2025-06-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202500073
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849710076634333184
author Jacob Johny
Savarithai Jenani Louis Anandaraj
Carolin Mehrmann
Xin Wei
Ankita Das
Niklas Scheer
Yuke Yang
Walid Hetaba
Petra Ebbinghaus
Ulrich Simon
Rüdiger‐A. Eichel
Florian Hausen
Holger Uphoff
Hans‐Christoph Mertins
R. Kramer Campen
Yujin Tong
Martin Rabe
Walter Leitner
Alexis Bordet
Marc Frederic Tesch
author_facet Jacob Johny
Savarithai Jenani Louis Anandaraj
Carolin Mehrmann
Xin Wei
Ankita Das
Niklas Scheer
Yuke Yang
Walid Hetaba
Petra Ebbinghaus
Ulrich Simon
Rüdiger‐A. Eichel
Florian Hausen
Holger Uphoff
Hans‐Christoph Mertins
R. Kramer Campen
Yujin Tong
Martin Rabe
Walter Leitner
Alexis Bordet
Marc Frederic Tesch
author_sort Jacob Johny
collection DOAJ
description Abstract Metal nanoparticles (NPs) immobilized on molecularly modified supports form versatile hybrid materials, offering extensive combinatorial flexibility and synergistic interactions between the organic and inorganic components, making them ideal for applications such as catalysis, and sensing. In catalysis, e.g., NPs‐ionic liquid combinations are shown to enhance activity, selectivity, and recyclability compared to NPs alone systems, though typically used powder‐based supports often hinder a detailed nanoscale structural analysis for an in‐depth understanding due to undefined surfaces. Here, an approach is developed to transfer such a system onto well‐defined surfaces for extended analysis, demonstrated on a model system composed of an imidazolium/NTf₂ ionic liquid and Ru NPs on Si. A comprehensive characterization suite is applied to probe the material properties at the nano‐ and macroscale including spatial arrangement, molecular orientation, surface homogeneity, hydrophilicity, and work function. The efficacy of the utilized approaches in obtaining a homogeneous ionic liquid monolayer decorated with Ru NPs of controlled distribution is demonstrated. It is identified that the particle deposition disturbs the conformational order of the molecular layer. The presented versatile methodological approach can be broadly expanded to multifunctional hybrid materials composed of metal NPs on molecularly modified supports, unlocking numerous possibilities for knowledge‐driven and rational material design.
format Article
id doaj-art-88e88b5ecd224e1cbb083fec49bb31d9
institution DOAJ
issn 2196-7350
language English
publishDate 2025-06-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj-art-88e88b5ecd224e1cbb083fec49bb31d92025-08-20T03:15:04ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-06-011212n/an/a10.1002/admi.202500073Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid MaterialsJacob Johny0Savarithai Jenani Louis Anandaraj1Carolin Mehrmann2Xin Wei3Ankita Das4Niklas Scheer5Yuke Yang6Walid Hetaba7Petra Ebbinghaus8Ulrich Simon9Rüdiger‐A. Eichel10Florian Hausen11Holger Uphoff12Hans‐Christoph Mertins13R. Kramer Campen14Yujin Tong15Martin Rabe16Walter Leitner17Alexis Bordet18Marc Frederic Tesch19Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyMax Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyMax Planck Institute for Sustainable Materials 40237 Düsseldorf GermanyInstitute of Inorganic Chemistry RWTH Aachen University 52074 Aachen GermanyMax Planck Institute for Sustainable Materials 40237 Düsseldorf GermanyForschungszentrum Jülich GmbH Institute of Energy Technologies IET‐1 – Fundamental Electrochemistry 52425 Jülich GermanyFaculty of Physics University of Duisburg‐Essen Lotharstraße 1 47057 Duisburg GermanyMax Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyMax Planck Institute for Sustainable Materials 40237 Düsseldorf GermanyInstitute of Inorganic Chemistry RWTH Aachen University 52074 Aachen GermanyForschungszentrum Jülich GmbH Institute of Energy Technologies IET‐1 – Fundamental Electrochemistry 52425 Jülich GermanyForschungszentrum Jülich GmbH Institute of Energy Technologies IET‐1 – Fundamental Electrochemistry 52425 Jülich GermanyDepartment of Engineering Physics Münster University of Applied Sciences Stegerwaldstrasse 39 48565 Steinfurt GermanyDepartment of Engineering Physics Münster University of Applied Sciences Stegerwaldstrasse 39 48565 Steinfurt GermanyFaculty of Physics University of Duisburg‐Essen Lotharstraße 1 47057 Duisburg GermanyFaculty of Physics University of Duisburg‐Essen Lotharstraße 1 47057 Duisburg GermanyMax Planck Institute for Sustainable Materials 40237 Düsseldorf GermanyMax Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyMax Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyMax Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim GermanyAbstract Metal nanoparticles (NPs) immobilized on molecularly modified supports form versatile hybrid materials, offering extensive combinatorial flexibility and synergistic interactions between the organic and inorganic components, making them ideal for applications such as catalysis, and sensing. In catalysis, e.g., NPs‐ionic liquid combinations are shown to enhance activity, selectivity, and recyclability compared to NPs alone systems, though typically used powder‐based supports often hinder a detailed nanoscale structural analysis for an in‐depth understanding due to undefined surfaces. Here, an approach is developed to transfer such a system onto well‐defined surfaces for extended analysis, demonstrated on a model system composed of an imidazolium/NTf₂ ionic liquid and Ru NPs on Si. A comprehensive characterization suite is applied to probe the material properties at the nano‐ and macroscale including spatial arrangement, molecular orientation, surface homogeneity, hydrophilicity, and work function. The efficacy of the utilized approaches in obtaining a homogeneous ionic liquid monolayer decorated with Ru NPs of controlled distribution is demonstrated. It is identified that the particle deposition disturbs the conformational order of the molecular layer. The presented versatile methodological approach can be broadly expanded to multifunctional hybrid materials composed of metal NPs on molecularly modified supports, unlocking numerous possibilities for knowledge‐driven and rational material design.https://doi.org/10.1002/admi.202500073microscopymolecularly modified surfacesmolecule‐nanoparticle interactionnanoparticlessum frequency generation spectroscopy
spellingShingle Jacob Johny
Savarithai Jenani Louis Anandaraj
Carolin Mehrmann
Xin Wei
Ankita Das
Niklas Scheer
Yuke Yang
Walid Hetaba
Petra Ebbinghaus
Ulrich Simon
Rüdiger‐A. Eichel
Florian Hausen
Holger Uphoff
Hans‐Christoph Mertins
R. Kramer Campen
Yujin Tong
Martin Rabe
Walter Leitner
Alexis Bordet
Marc Frederic Tesch
Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
Advanced Materials Interfaces
microscopy
molecularly modified surfaces
molecule‐nanoparticle interaction
nanoparticles
sum frequency generation spectroscopy
title Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
title_full Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
title_fullStr Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
title_full_unstemmed Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
title_short Unraveling the Nanoscale Structure of Organic–Inorganic Hybrid Materials
title_sort unraveling the nanoscale structure of organic inorganic hybrid materials
topic microscopy
molecularly modified surfaces
molecule‐nanoparticle interaction
nanoparticles
sum frequency generation spectroscopy
url https://doi.org/10.1002/admi.202500073
work_keys_str_mv AT jacobjohny unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT savarithaijenanilouisanandaraj unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT carolinmehrmann unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT xinwei unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT ankitadas unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT niklasscheer unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT yukeyang unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT walidhetaba unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT petraebbinghaus unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT ulrichsimon unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT rudigeraeichel unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT florianhausen unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT holgeruphoff unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT hanschristophmertins unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT rkramercampen unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT yujintong unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT martinrabe unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT walterleitner unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT alexisbordet unravelingthenanoscalestructureoforganicinorganichybridmaterials
AT marcfrederictesch unravelingthenanoscalestructureoforganicinorganichybridmaterials