Entropy-Assisted Quality Pattern Identification in Finance

Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlappin...

Full description

Saved in:
Bibliographic Details
Main Authors: Rishabh Gupta, Shivam Gupta, Jaskirat Singh, Sabre Kais
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/4/430
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain: patterns that lead to high one-sided movements in historical data yet retain low local entropy are more “informative” in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMMs), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies. This paper offers an in-depth illustration of our entropy-assisted framework through two case studies on Gold vs. USD and GBPUSD. While these examples demonstrate the method’s potential for extracting high-quality patterns, they do not constitute an exhaustive survey of all possible asset classes.
ISSN:1099-4300