Some Nonlinear Vortex Solutions

We consider the steady-state two-dimensional motion of an inviscid incompressible fluid which obeys a nonlinear Poisson equation. By seeking solutions of a specific form, we arrive at some interesting new nonlinear vortex solutions.

Saved in:
Bibliographic Details
Main Authors: Michael C. Haslam, Christopher J. Smith, Ghada Alobaidi, Roland Mallier
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2012/929626
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548474023837696
author Michael C. Haslam
Christopher J. Smith
Ghada Alobaidi
Roland Mallier
author_facet Michael C. Haslam
Christopher J. Smith
Ghada Alobaidi
Roland Mallier
author_sort Michael C. Haslam
collection DOAJ
description We consider the steady-state two-dimensional motion of an inviscid incompressible fluid which obeys a nonlinear Poisson equation. By seeking solutions of a specific form, we arrive at some interesting new nonlinear vortex solutions.
format Article
id doaj-art-88b8c964ad534ea8a3160740ad5915e6
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-88b8c964ad534ea8a3160740ad5915e62025-02-03T06:14:01ZengWileyInternational Journal of Differential Equations1687-96431687-96512012-01-01201210.1155/2012/929626929626Some Nonlinear Vortex SolutionsMichael C. Haslam0Christopher J. Smith1Ghada Alobaidi2Roland Mallier3Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, CanadaDepartment of Applied Mathematics, University of Western Ontario, London, ON, N6A 5B7, CanadaDepartment of Mathematics and Statistics, American University of Sharjah, Sharjah, UAEDepartment of Applied Mathematics, University of Western Ontario, London, ON, N6A 5B7, CanadaWe consider the steady-state two-dimensional motion of an inviscid incompressible fluid which obeys a nonlinear Poisson equation. By seeking solutions of a specific form, we arrive at some interesting new nonlinear vortex solutions.http://dx.doi.org/10.1155/2012/929626
spellingShingle Michael C. Haslam
Christopher J. Smith
Ghada Alobaidi
Roland Mallier
Some Nonlinear Vortex Solutions
International Journal of Differential Equations
title Some Nonlinear Vortex Solutions
title_full Some Nonlinear Vortex Solutions
title_fullStr Some Nonlinear Vortex Solutions
title_full_unstemmed Some Nonlinear Vortex Solutions
title_short Some Nonlinear Vortex Solutions
title_sort some nonlinear vortex solutions
url http://dx.doi.org/10.1155/2012/929626
work_keys_str_mv AT michaelchaslam somenonlinearvortexsolutions
AT christopherjsmith somenonlinearvortexsolutions
AT ghadaalobaidi somenonlinearvortexsolutions
AT rolandmallier somenonlinearvortexsolutions