Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates

Recent advancements in mining technology have led to the widespread adoption of the cut-and-fill stoping method in metal mines due to its effectiveness in controlling ground pressure, minimizing surface settlement, and reducing tailings discharge. Backfill serves as a core component of this method,...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaofei LI, Jiajian LI, Yunpeng KOU, Weidong SONG
Format: Article
Language:zho
Published: Science Press 2025-07-01
Series:工程科学学报
Subjects:
Online Access:http://cje.ustb.edu.cn/article/doi/10.13374/j.issn2095-9389.2025.01.02.001
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849706899729022976
author Xiaofei LI
Jiajian LI
Yunpeng KOU
Weidong SONG
author_facet Xiaofei LI
Jiajian LI
Yunpeng KOU
Weidong SONG
author_sort Xiaofei LI
collection DOAJ
description Recent advancements in mining technology have led to the widespread adoption of the cut-and-fill stoping method in metal mines due to its effectiveness in controlling ground pressure, minimizing surface settlement, and reducing tailings discharge. Backfill serves as a core component of this method, and its mechanical behavior and stability directly influence the safety and efficiency of mining operations. This study investigates the effect of unloading rate on the mechanical behavior of backfill and its destabilization and damage mechanisms in complex stress environments. True triaxial unloading tests were carried out on backfill specimens under four different unloading rates: 3, 4, 6, and 8 kPa·s−1. The loading and unloading processes were independently controlled along three principal stress directions (σ1, σ2, and σ3). In addition, the energy dissipation characteristics of backfill under different unloading rates were analyzed based on the energy dissipation principle. CT scanning was performed to obtain the three-dimensional distribution and morphology of internal cracks within the backfill, followed by quantitative crack analysis using image analysis software. Key experimental parameters include axial stress and strain, elastic and dissipative energy, three-dimensional crack reconstruction, and crack distribution curves along the σ1, σ2, and σ3 directions. The results indicate that the stress state within the backfill changed significantly during unloading. As the unloading rate increased, the stress redistribution within the backfill intensified, leading to a decrease in axial peak stress, an increase in the dissipated energy at the peak stress point, and greater structural damage. The mechanism by which the unloading rate affects the true triaxial mechanical behavior of the backfill is as follows: As the unloading rate increases, the stress redistribution within the backfill becomes more intense. Unloading results in the rapid release of stress, causing the backfill to experience large stress changes within a relatively short period. This resulted in reduced peak axial stresses, increased damage, and the formation of unloading cracks in the backfill at higher unloading rates. In practical engineering applications, variations in stress characteristics significantly affect backfill stability. A high unloading rate can lead to sudden backfill failure, increasing the risk of surface subsidence or mine accidents. Proper control of the unloading rate reduces energy dissipation and improves backfill stability. Optimizing backfill material composition and construction techniques based on expected discharge rate is essential to maintaining structural backfill stability during mining. In addition, optimizing the mining sequence allows for effective unloading rate control, reducing ground pressure activity and mitigating backfill damage caused by rapid unloading. Strategies such as stepwise mining and gradual unloading have been employed to address these challenges. This study provides a scientific basis for optimizing mine design and improving mine safety.
format Article
id doaj-art-88a5e87277ea480db1b7ea4d24148a16
institution DOAJ
issn 2095-9389
language zho
publishDate 2025-07-01
publisher Science Press
record_format Article
series 工程科学学报
spelling doaj-art-88a5e87277ea480db1b7ea4d24148a162025-08-20T03:16:04ZzhoScience Press工程科学学报2095-93892025-07-014771387139710.13374/j.issn2095-9389.2025.01.02.001250102-0001Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading ratesXiaofei LI0Jiajian LI1Yunpeng KOU2Weidong SONG3School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, ChinaSchool of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, ChinaSchool of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, ChinaSchool of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, ChinaRecent advancements in mining technology have led to the widespread adoption of the cut-and-fill stoping method in metal mines due to its effectiveness in controlling ground pressure, minimizing surface settlement, and reducing tailings discharge. Backfill serves as a core component of this method, and its mechanical behavior and stability directly influence the safety and efficiency of mining operations. This study investigates the effect of unloading rate on the mechanical behavior of backfill and its destabilization and damage mechanisms in complex stress environments. True triaxial unloading tests were carried out on backfill specimens under four different unloading rates: 3, 4, 6, and 8 kPa·s−1. The loading and unloading processes were independently controlled along three principal stress directions (σ1, σ2, and σ3). In addition, the energy dissipation characteristics of backfill under different unloading rates were analyzed based on the energy dissipation principle. CT scanning was performed to obtain the three-dimensional distribution and morphology of internal cracks within the backfill, followed by quantitative crack analysis using image analysis software. Key experimental parameters include axial stress and strain, elastic and dissipative energy, three-dimensional crack reconstruction, and crack distribution curves along the σ1, σ2, and σ3 directions. The results indicate that the stress state within the backfill changed significantly during unloading. As the unloading rate increased, the stress redistribution within the backfill intensified, leading to a decrease in axial peak stress, an increase in the dissipated energy at the peak stress point, and greater structural damage. The mechanism by which the unloading rate affects the true triaxial mechanical behavior of the backfill is as follows: As the unloading rate increases, the stress redistribution within the backfill becomes more intense. Unloading results in the rapid release of stress, causing the backfill to experience large stress changes within a relatively short period. This resulted in reduced peak axial stresses, increased damage, and the formation of unloading cracks in the backfill at higher unloading rates. In practical engineering applications, variations in stress characteristics significantly affect backfill stability. A high unloading rate can lead to sudden backfill failure, increasing the risk of surface subsidence or mine accidents. Proper control of the unloading rate reduces energy dissipation and improves backfill stability. Optimizing backfill material composition and construction techniques based on expected discharge rate is essential to maintaining structural backfill stability during mining. In addition, optimizing the mining sequence allows for effective unloading rate control, reducing ground pressure activity and mitigating backfill damage caused by rapid unloading. Strategies such as stepwise mining and gradual unloading have been employed to address these challenges. This study provides a scientific basis for optimizing mine design and improving mine safety.http://cje.ustb.edu.cn/article/doi/10.13374/j.issn2095-9389.2025.01.02.001true triaxial unloading experimentfine tailings cemented backfillenergy dissipationct scanning3d reconstruction
spellingShingle Xiaofei LI
Jiajian LI
Yunpeng KOU
Weidong SONG
Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
工程科学学报
true triaxial unloading experiment
fine tailings cemented backfill
energy dissipation
ct scanning
3d reconstruction
title Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
title_full Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
title_fullStr Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
title_full_unstemmed Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
title_short Analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
title_sort analysis of true triaxial mechanical behavior and energy dissipation of backfill under different unloading rates
topic true triaxial unloading experiment
fine tailings cemented backfill
energy dissipation
ct scanning
3d reconstruction
url http://cje.ustb.edu.cn/article/doi/10.13374/j.issn2095-9389.2025.01.02.001
work_keys_str_mv AT xiaofeili analysisoftruetriaxialmechanicalbehaviorandenergydissipationofbackfillunderdifferentunloadingrates
AT jiajianli analysisoftruetriaxialmechanicalbehaviorandenergydissipationofbackfillunderdifferentunloadingrates
AT yunpengkou analysisoftruetriaxialmechanicalbehaviorandenergydissipationofbackfillunderdifferentunloadingrates
AT weidongsong analysisoftruetriaxialmechanicalbehaviorandenergydissipationofbackfillunderdifferentunloadingrates