Synthesis and Characterization of Hierarchical Porous α-FeOOH for the Adsorption and Photodegradation of Rhodamine B
Hierarchical porous α-FeOOH nanoparticles were controlled and prepared via a facile polystyrene (PS) microspheres-templated method. The α-Fe2O3 was obtained by the calcination of the as-prepared α-FeOOH. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning ele...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | International Journal of Photoenergy |
| Online Access: | http://dx.doi.org/10.1155/2014/468921 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hierarchical porous α-FeOOH nanoparticles were controlled and prepared via a facile polystyrene (PS) microspheres-templated method. The α-Fe2O3 was obtained by the calcination of the as-prepared α-FeOOH. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2-sorption techniques. The adsorption and photodegradation of Rhodamine B performance were evaluated under UV light at room temperature. The results indicated that the photocatalytic activity of the α-FeOOH nanoparticles is superior to α-Fe2O3-200 and α-Fe2O3-300 due to the hierarchically multiporous structure and high surface area. This convenient and low-cost process provides a rational synthesis alternative for the preparation of multiporous materials and the as-synthesis products have great foreground applications in many aspects. |
|---|---|
| ISSN: | 1110-662X 1687-529X |