Hypoplastic Modeling of Soil–Structure Contact Surface Considering Initial Anisotropy and Roughness

The development of a constitutive model for soil–structure contact surfaces remains a pivotal area of research within the field of soil–structure interaction. Drawing from the Gudehus–Bauer sand hypoplasticity model, this paper employs a technique that reduces the stress tensor and strain rate tenso...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingtao Yu, Junwang Cao, Zixuan Chen, Jintao Zhu, Yulong Zhang, Pengqiang Yu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/1/244
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of a constitutive model for soil–structure contact surfaces remains a pivotal area of research within the field of soil–structure interaction. Drawing from the Gudehus–Bauer sand hypoplasticity model, this paper employs a technique that reduces the stress tensor and strain rate tensor components to formulate a hypoplastic model tailored for sand–structure interfaces. To capture the influence of initial anisotropy, a deposition direction peak stress coefficient is incorporated; meanwhile, a friction parameter is introduced to address the surface roughness of the contact. Consequently, a comprehensive hypoplastic constitutive model is developed that takes into account both initial anisotropy and roughness. Comparative analysis with experimental data from soils on contact surfaces with diverse boundary conditions and levels of roughness indicates that the proposed model accurately forecasts shear test outcomes across various contact surfaces. Utilizing the finite element software ABAQUS 2021, an FRIC subroutine was developed, which, through simulating direct shear tests on sand–structure contact surfaces, has proven its efficacy in predicting the shear behavior of these interfaces.
ISSN:2076-3417