Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies

<p>Hydrogen peroxide (H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>) is a key atmospheric oxidant, crucial for oxidation capacity and sulfate production. However, its chemis...

Full description

Saved in:
Bibliographic Details
Main Authors: C. Ye, P. Liu, C. Xue, C. Zhang, Z. Ma, C. Liu, J. Liu, K. Lu, Y. Mu, Y. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2025-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/6991/2025/acp-25-6991-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849415525475549184
author C. Ye
P. Liu
C. Xue
C. Zhang
Z. Ma
C. Liu
J. Liu
K. Lu
Y. Mu
Y. Zhang
author_facet C. Ye
P. Liu
C. Xue
C. Zhang
Z. Ma
C. Liu
J. Liu
K. Lu
Y. Mu
Y. Zhang
author_sort C. Ye
collection DOAJ
description <p>Hydrogen peroxide (H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>) is a key atmospheric oxidant, crucial for oxidation capacity and sulfate production. However, its chemistry remains understudied compared to ozone (O<span class="inline-formula"><sub>3</sub></span>), limiting our understanding of photochemical pollution. In summer 2016, atmospheric peroxides and trace gases were measured at a rural site in the North China Plain. H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> was the dominant peroxide (0.62 <span class="inline-formula">±</span> 0.80 ppb), constituting 69 % of total peroxides. It exhibited diurnal variation similar to peroxyacetyl nitrate (PAN) and O<span class="inline-formula"><sub>3</sub></span>, indicating photochemical production. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">3</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mo>/</mo><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="06902578fea60196e9a44a2af6762aaa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6991-2025-ie00001.svg" width="50pt" height="14pt" src="acp-25-6991-2025-ie00001.png"/></svg:svg></span></span> ratio was higher on high-particle days, suggesting that H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> uptake by particles reduces its concentration. A box model with default gas-phase chemistry overestimated H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> by a factor of 2.7, and including particle uptake of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> (uptake coefficient of 6 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−4</sup></span>) improved agreement with observations, although we note that this value carries some uncertainty related to the assumed HO<span class="inline-formula"><sub>2</sub></span> uptake coefficient.</p> <p>HO<span class="inline-formula"><sub>2</sub></span> recombination contributed 91 % of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> production, with a peak rate of 1 ppb h<span class="inline-formula"><sup>−1</sup></span>. Major removal pathways included particle uptake (69 %), dry deposition (25 %), OH reaction (4 %), and photolysis (2 %). Relative incremental reactivity (RIR) analysis showed that reducing NO<span class="inline-formula"><sub><i>x</i></sub></span>, PM<span class="inline-formula"><sub>2.5</sub></span>, and alkanes increased H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, while reducing alkenes, aromatics, CO, and HONO decreased it, with alkenes having the strongest effect. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mi>z</mi></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a9182d24475047cf51b4132e8d78eed3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6991-2025-ie00002.svg" width="58pt" height="14pt" src="acp-25-6991-2025-ie00002.png"/></svg:svg></span></span> ratios (<span class="inline-formula"><i>&gt;</i>0.15</span> in 82 % of cases) indicated that O<span class="inline-formula"><sub>3</sub></span> formation was in a transition and NO<span class="inline-formula"><sub><i>x</i></sub></span>-sensitive regime, emphasizing the need for further volatile organic compound (VOC) and NO<span class="inline-formula"><sub><i>x</i></sub></span> reductions to mitigate both H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> and O<span class="inline-formula"><sub>3</sub></span> pollution. These findings improve our understanding of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> chemistry and provide insights into the mitigation of photochemical pollution in rural North China.</p>
format Article
id doaj-art-882ffc451d9d4ecb9722d003f79e18d9
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-882ffc451d9d4ecb9722d003f79e18d92025-08-20T03:33:31ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-07-01256991700510.5194/acp-25-6991-2025Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studiesC. Ye0P. Liu1C. Xue2C. Zhang3Z. Ma4C. Liu5J. Liu6K. Lu7Y. Mu8Y. Zhang9School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, ChinaResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaAerosol Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, GermanyResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaState Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, ChinaState Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China<p>Hydrogen peroxide (H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>) is a key atmospheric oxidant, crucial for oxidation capacity and sulfate production. However, its chemistry remains understudied compared to ozone (O<span class="inline-formula"><sub>3</sub></span>), limiting our understanding of photochemical pollution. In summer 2016, atmospheric peroxides and trace gases were measured at a rural site in the North China Plain. H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> was the dominant peroxide (0.62 <span class="inline-formula">±</span> 0.80 ppb), constituting 69 % of total peroxides. It exhibited diurnal variation similar to peroxyacetyl nitrate (PAN) and O<span class="inline-formula"><sub>3</sub></span>, indicating photochemical production. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">3</mn></msub><mspace width="0.125em" linebreak="nobreak"/><mo>/</mo><mspace linebreak="nobreak" width="0.125em"/><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="06902578fea60196e9a44a2af6762aaa"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6991-2025-ie00001.svg" width="50pt" height="14pt" src="acp-25-6991-2025-ie00001.png"/></svg:svg></span></span> ratio was higher on high-particle days, suggesting that H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> uptake by particles reduces its concentration. A box model with default gas-phase chemistry overestimated H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> by a factor of 2.7, and including particle uptake of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> (uptake coefficient of 6 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>−4</sup></span>) improved agreement with observations, although we note that this value carries some uncertainty related to the assumed HO<span class="inline-formula"><sub>2</sub></span> uptake coefficient.</p> <p>HO<span class="inline-formula"><sub>2</sub></span> recombination contributed 91 % of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> production, with a peak rate of 1 ppb h<span class="inline-formula"><sup>−1</sup></span>. Major removal pathways included particle uptake (69 %), dry deposition (25 %), OH reaction (4 %), and photolysis (2 %). Relative incremental reactivity (RIR) analysis showed that reducing NO<span class="inline-formula"><sub><i>x</i></sub></span>, PM<span class="inline-formula"><sub>2.5</sub></span>, and alkanes increased H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>, while reducing alkenes, aromatics, CO, and HONO decreased it, with alkenes having the strongest effect. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mi>z</mi></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a9182d24475047cf51b4132e8d78eed3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6991-2025-ie00002.svg" width="58pt" height="14pt" src="acp-25-6991-2025-ie00002.png"/></svg:svg></span></span> ratios (<span class="inline-formula"><i>&gt;</i>0.15</span> in 82 % of cases) indicated that O<span class="inline-formula"><sub>3</sub></span> formation was in a transition and NO<span class="inline-formula"><sub><i>x</i></sub></span>-sensitive regime, emphasizing the need for further volatile organic compound (VOC) and NO<span class="inline-formula"><sub><i>x</i></sub></span> reductions to mitigate both H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> and O<span class="inline-formula"><sub>3</sub></span> pollution. These findings improve our understanding of H<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span> chemistry and provide insights into the mitigation of photochemical pollution in rural North China.</p>https://acp.copernicus.org/articles/25/6991/2025/acp-25-6991-2025.pdf
spellingShingle C. Ye
P. Liu
C. Xue
C. Zhang
Z. Ma
C. Liu
J. Liu
K. Lu
Y. Mu
Y. Zhang
Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
Atmospheric Chemistry and Physics
title Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
title_full Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
title_fullStr Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
title_full_unstemmed Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
title_short Understanding summertime H<sub>2</sub>O<sub>2</sub> chemistry in the North China Plain through observations and modeling studies
title_sort understanding summertime h sub 2 sub o sub 2 sub chemistry in the north china plain through observations and modeling studies
url https://acp.copernicus.org/articles/25/6991/2025/acp-25-6991-2025.pdf
work_keys_str_mv AT cye understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT pliu understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT cxue understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT czhang understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT zma understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT cliu understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT jliu understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT klu understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT ymu understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies
AT yzhang understandingsummertimehsub2subosub2subchemistryinthenorthchinaplainthroughobservationsandmodelingstudies