Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
This paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2015/250570 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832567381325512704 |
---|---|
author | Zhu Wei Qingcheng Zhang Yongzheng Zhang Chunyue Wang |
author_facet | Zhu Wei Qingcheng Zhang Yongzheng Zhang Chunyue Wang |
author_sort | Zhu Wei |
collection | DOAJ |
description | This paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where L=W(0∣n), S(0∣n), and K(n). |
format | Article |
id | doaj-art-881882dbe98846b5a3083cfc0e8c9f08 |
institution | Kabale University |
issn | 1687-9120 1687-9139 |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Mathematical Physics |
spelling | doaj-art-881882dbe98846b5a3083cfc0e8c9f082025-02-03T01:01:40ZengWileyAdvances in Mathematical Physics1687-91201687-91392015-01-01201510.1155/2015/250570250570Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)Zhu Wei0Qingcheng Zhang1Yongzheng Zhang2Chunyue Wang3School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Applied Sciences, Jilin Teachers Institute of Engineering and Technology, Changchun 130052, ChinaThis paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where L=W(0∣n), S(0∣n), and K(n).http://dx.doi.org/10.1155/2015/250570 |
spellingShingle | Zhu Wei Qingcheng Zhang Yongzheng Zhang Chunyue Wang Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) Advances in Mathematical Physics |
title | Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) |
title_full | Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) |
title_fullStr | Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) |
title_full_unstemmed | Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) |
title_short | Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n) |
title_sort | simple modules for modular lie superalgebras w 0 n s 0 n and k n |
url | http://dx.doi.org/10.1155/2015/250570 |
work_keys_str_mv | AT zhuwei simplemodulesformodularliesuperalgebrasw0ns0nandkn AT qingchengzhang simplemodulesformodularliesuperalgebrasw0ns0nandkn AT yongzhengzhang simplemodulesformodularliesuperalgebrasw0ns0nandkn AT chunyuewang simplemodulesformodularliesuperalgebrasw0ns0nandkn |