Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)

This paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu Wei, Qingcheng Zhang, Yongzheng Zhang, Chunyue Wang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2015/250570
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567381325512704
author Zhu Wei
Qingcheng Zhang
Yongzheng Zhang
Chunyue Wang
author_facet Zhu Wei
Qingcheng Zhang
Yongzheng Zhang
Chunyue Wang
author_sort Zhu Wei
collection DOAJ
description This paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where L=W(0∣n), S(0∣n), and K(n).
format Article
id doaj-art-881882dbe98846b5a3083cfc0e8c9f08
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-881882dbe98846b5a3083cfc0e8c9f082025-02-03T01:01:40ZengWileyAdvances in Mathematical Physics1687-91201687-91392015-01-01201510.1155/2015/250570250570Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)Zhu Wei0Qingcheng Zhang1Yongzheng Zhang2Chunyue Wang3School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, ChinaSchool of Applied Sciences, Jilin Teachers Institute of Engineering and Technology, Changchun 130052, ChinaThis paper constructs a series of modules from modular Lie superalgebras W(0∣n), S(0∣n), and K(n) over a field of prime characteristic p≠2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where L=W(0∣n), S(0∣n), and K(n).http://dx.doi.org/10.1155/2015/250570
spellingShingle Zhu Wei
Qingcheng Zhang
Yongzheng Zhang
Chunyue Wang
Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
Advances in Mathematical Physics
title Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
title_full Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
title_fullStr Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
title_full_unstemmed Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
title_short Simple Modules for Modular Lie Superalgebras W(0∣n), S(0∣n), and K(n)
title_sort simple modules for modular lie superalgebras w 0 n s 0 n and k n
url http://dx.doi.org/10.1155/2015/250570
work_keys_str_mv AT zhuwei simplemodulesformodularliesuperalgebrasw0ns0nandkn
AT qingchengzhang simplemodulesformodularliesuperalgebrasw0ns0nandkn
AT yongzhengzhang simplemodulesformodularliesuperalgebrasw0ns0nandkn
AT chunyuewang simplemodulesformodularliesuperalgebrasw0ns0nandkn