Signal Integrity Analysis in Carbon Nanotube Based Through-Silicon Via

Development of a reliable 3D integrated system is largely dependent on the choice of filler materials used in through-silicon vias (TSVs). This research paper presents carbon nanotube (CNT) bundles as prospective filler materials for TSVs and provides an analysis of signal integrity for different si...

Full description

Saved in:
Bibliographic Details
Main Authors: Manoj Kumar Majumder, Archana Kumari, Brajesh Kumar Kaushik, Sanjeev Kumar Manhas
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Active and Passive Electronic Components
Online Access:http://dx.doi.org/10.1155/2014/524107
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of a reliable 3D integrated system is largely dependent on the choice of filler materials used in through-silicon vias (TSVs). This research paper presents carbon nanotube (CNT) bundles as prospective filler materials for TSVs and provides an analysis of signal integrity for different single- (SWCNT), double- (DWCNT), and multi-walled CNT (MWCNT) bundle based TSVs. Depending on the physical configuration of a pair of TSVs, an equivalent electrical model is employed to analyze the in-phase and out-phase delays. It is observed that, using an MWCNT bundle (with number of shells = 10), the overall in-phase delays are reduced by 96.86%, 92.33%, 78.35%, and 32.72% compared to the bundled SWCNT, DWCNT, 4-shell MWCNT, and 8-shell MWCNT, respectively; similarly, the overall reduction in out-phase delay is 85.89%, 73.38%, 45.92%, and 12.56%, respectively.
ISSN:0882-7516
1563-5031