Observability and uniqueness theorem for a coupled hyperbolic system

We deal with the inverse inequality for a coupled hyperbolic system with dissipation. The inverse inequality is an indispensable inequality that appears in the Hilbert Uniqueness Method (HUM), to establish equivalence of norms which guarantees uniqueness and boundary exact controllability results. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Boris V. Kapitonov, Joel S. Souza
Format: Article
Language:English
Published: Wiley 2000-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171200002477
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We deal with the inverse inequality for a coupled hyperbolic system with dissipation. The inverse inequality is an indispensable inequality that appears in the Hilbert Uniqueness Method (HUM), to establish equivalence of norms which guarantees uniqueness and boundary exact controllability results. The term observability is due to the mathematician Ho (1986) who used it in his works relating it to the inverse inequality. We obtain the inverse inequality by the Lagrange multiplier method under certain conditions.
ISSN:0161-1712
1687-0425