GLEAM4: global land evaporation and soil moisture dataset at 0.1° resolution from 1980 to near present
Abstract Terrestrial evaporation plays a crucial role in modulating climate and water resources. Here, we present a continuous, daily dataset covering 1980–2023 with a 0.1°spatial resolution, produced using the fourth generation of the Global Land Evaporation Amsterdam Model (GLEAM). GLEAM4 embraces...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Scientific Data |
| Online Access: | https://doi.org/10.1038/s41597-025-04610-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Terrestrial evaporation plays a crucial role in modulating climate and water resources. Here, we present a continuous, daily dataset covering 1980–2023 with a 0.1°spatial resolution, produced using the fourth generation of the Global Land Evaporation Amsterdam Model (GLEAM). GLEAM4 embraces developments in hybrid modelling, learning evaporative stress from eddy-covariance and sapflow data. It features improved representation of key factors such as interception, atmospheric water demand, soil moisture, and plant access to groundwater. Estimates are inter-compared with existing global evaporation products and validated against in situ measurements, including data from 473 eddy-covariance sites, showing a median correlation of 0.73, root-mean-square error of 0.95 mm d−1, and Kling–Gupta efficiency of 0.49. Global land evaporation is estimated at 68.5 × 103 km3 yr−1, with 62% attributed to transpiration. Beyond actual evaporation and its components (transpiration, interception loss, soil evaporation, etc.), the dataset also provides soil moisture, potential evaporation, sensible heat flux, and evaporative stress, facilitating a wide range of hydrological, climatic, and ecological studies. |
|---|---|
| ISSN: | 2052-4463 |