Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent

We study existence of a nontrivial solution of -Δpu(x)+u(x)p-1=u(x)q(x)-1,  u(x)≥0,  x∈RN,  u∈Wrad1,p(RN), under some conditions on q(x), especially, lim inf|x|→∞ q(x)=p. Concerning this problem, we firstly consider compactness and noncompactness for the embedding from Wrad1,p(RN) to Lq(x)(RN). We p...

Full description

Saved in:
Bibliographic Details
Main Authors: Masato Hashizume, Megumi Sano
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/5497172
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552866655502336
author Masato Hashizume
Megumi Sano
author_facet Masato Hashizume
Megumi Sano
author_sort Masato Hashizume
collection DOAJ
description We study existence of a nontrivial solution of -Δpu(x)+u(x)p-1=u(x)q(x)-1,  u(x)≥0,  x∈RN,  u∈Wrad1,p(RN), under some conditions on q(x), especially, lim inf|x|→∞ q(x)=p. Concerning this problem, we firstly consider compactness and noncompactness for the embedding from Wrad1,p(RN) to Lq(x)(RN). We point out that the decaying speed of q(x) at infinity plays an essential role on the compactness. Secondly, by applying the compactness result, we show the existence of a nontrivial solution of the elliptic equation.
format Article
id doaj-art-87df06c203f842988cfd244481649869
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-87df06c203f842988cfd2444816498692025-02-03T05:57:37ZengWileyJournal of Function Spaces2314-88962314-88882018-01-01201810.1155/2018/54971725497172Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical ExponentMasato Hashizume0Megumi Sano1Graduate School of Science and Engineering, Ehime University, 10-13 Dougohimata, Matsuyama-shi, Ehime-ken 790-8577, JapanDepartment of Mathematics, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, JapanWe study existence of a nontrivial solution of -Δpu(x)+u(x)p-1=u(x)q(x)-1,  u(x)≥0,  x∈RN,  u∈Wrad1,p(RN), under some conditions on q(x), especially, lim inf|x|→∞ q(x)=p. Concerning this problem, we firstly consider compactness and noncompactness for the embedding from Wrad1,p(RN) to Lq(x)(RN). We point out that the decaying speed of q(x) at infinity plays an essential role on the compactness. Secondly, by applying the compactness result, we show the existence of a nontrivial solution of the elliptic equation.http://dx.doi.org/10.1155/2018/5497172
spellingShingle Masato Hashizume
Megumi Sano
Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
Journal of Function Spaces
title Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
title_full Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
title_fullStr Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
title_full_unstemmed Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
title_short Strauss’s Radial Compactness and Nonlinear Elliptic Equation Involving a Variable Critical Exponent
title_sort strauss s radial compactness and nonlinear elliptic equation involving a variable critical exponent
url http://dx.doi.org/10.1155/2018/5497172
work_keys_str_mv AT masatohashizume strausssradialcompactnessandnonlinearellipticequationinvolvingavariablecriticalexponent
AT megumisano strausssradialcompactnessandnonlinearellipticequationinvolvingavariablecriticalexponent