Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control with Spatio-Temporal Attention Mechanism
Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8605 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This study proposes a Multi-Agent Deep Reinforcement Learning (MADRL) framework for large-scale traffic signal control. The framework employs spatio-temporal attention networks to extract relevant traffic patterns and a hierarchical reinforcement learning strategy for coordinated multi-agent optimization. The problem is formulated as a Markov Decision Process (MDP) with a novel reward function that balances vehicle waiting time, throughput, and fairness. We validate our approach on simulated large-scale traffic scenarios using SUMO (Simulation of Urban Mobility). Experimental results demonstrate that our framework reduces vehicle waiting time by 25% compared to baseline methods while maintaining scalability across different road network sizes. The proposed spatio-temporal multi-agent reinforcement learning framework effectively optimizes large-scale traffic signal control, providing a scalable and efficient solution for smart urban transportation. |
|---|---|
| ISSN: | 2076-3417 |