Cryogenic microwave link for quantum local area networks

Abstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLA...

Full description

Saved in:
Bibliographic Details
Main Authors: W. K. Yam, M. Renger, S. Gandorfer, F. Fesquet, M. Handschuh, K. E. Honasoge, F. Kronowetter, Y. Nojiri, M. Partanen, M. Pfeiffer, H. van der Vliet, A. J. Matthews, J. Govenius, R. N. Jabdaraghi, M. Prunnila, A. Marx, F. Deppe, R. Gross, K. G. Fedorov
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-025-01046-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849687872228032512
author W. K. Yam
M. Renger
S. Gandorfer
F. Fesquet
M. Handschuh
K. E. Honasoge
F. Kronowetter
Y. Nojiri
M. Partanen
M. Pfeiffer
H. van der Vliet
A. J. Matthews
J. Govenius
R. N. Jabdaraghi
M. Prunnila
A. Marx
F. Deppe
R. Gross
K. G. Fedorov
author_facet W. K. Yam
M. Renger
S. Gandorfer
F. Fesquet
M. Handschuh
K. E. Honasoge
F. Kronowetter
Y. Nojiri
M. Partanen
M. Pfeiffer
H. van der Vliet
A. J. Matthews
J. Govenius
R. N. Jabdaraghi
M. Prunnila
A. Marx
F. Deppe
R. Gross
K. G. Fedorov
author_sort W. K. Yam
collection DOAJ
description Abstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits.
format Article
id doaj-art-87d870219cbb4b14b0e1936e5d514032
institution DOAJ
issn 2056-6387
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series npj Quantum Information
spelling doaj-art-87d870219cbb4b14b0e1936e5d5140322025-08-20T03:22:12ZengNature Portfolionpj Quantum Information2056-63872025-05-0111111010.1038/s41534-025-01046-5Cryogenic microwave link for quantum local area networksW. K. Yam0M. Renger1S. Gandorfer2F. Fesquet3M. Handschuh4K. E. Honasoge5F. Kronowetter6Y. Nojiri7M. Partanen8M. Pfeiffer9H. van der Vliet10A. J. Matthews11J. Govenius12R. N. Jabdaraghi13M. Prunnila14A. Marx15F. Deppe16R. Gross17K. G. Fedorov18Walther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenOxford Instruments NanoScienceOxford Instruments NanoScienceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenAbstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits.https://doi.org/10.1038/s41534-025-01046-5
spellingShingle W. K. Yam
M. Renger
S. Gandorfer
F. Fesquet
M. Handschuh
K. E. Honasoge
F. Kronowetter
Y. Nojiri
M. Partanen
M. Pfeiffer
H. van der Vliet
A. J. Matthews
J. Govenius
R. N. Jabdaraghi
M. Prunnila
A. Marx
F. Deppe
R. Gross
K. G. Fedorov
Cryogenic microwave link for quantum local area networks
npj Quantum Information
title Cryogenic microwave link for quantum local area networks
title_full Cryogenic microwave link for quantum local area networks
title_fullStr Cryogenic microwave link for quantum local area networks
title_full_unstemmed Cryogenic microwave link for quantum local area networks
title_short Cryogenic microwave link for quantum local area networks
title_sort cryogenic microwave link for quantum local area networks
url https://doi.org/10.1038/s41534-025-01046-5
work_keys_str_mv AT wkyam cryogenicmicrowavelinkforquantumlocalareanetworks
AT mrenger cryogenicmicrowavelinkforquantumlocalareanetworks
AT sgandorfer cryogenicmicrowavelinkforquantumlocalareanetworks
AT ffesquet cryogenicmicrowavelinkforquantumlocalareanetworks
AT mhandschuh cryogenicmicrowavelinkforquantumlocalareanetworks
AT kehonasoge cryogenicmicrowavelinkforquantumlocalareanetworks
AT fkronowetter cryogenicmicrowavelinkforquantumlocalareanetworks
AT ynojiri cryogenicmicrowavelinkforquantumlocalareanetworks
AT mpartanen cryogenicmicrowavelinkforquantumlocalareanetworks
AT mpfeiffer cryogenicmicrowavelinkforquantumlocalareanetworks
AT hvandervliet cryogenicmicrowavelinkforquantumlocalareanetworks
AT ajmatthews cryogenicmicrowavelinkforquantumlocalareanetworks
AT jgovenius cryogenicmicrowavelinkforquantumlocalareanetworks
AT rnjabdaraghi cryogenicmicrowavelinkforquantumlocalareanetworks
AT mprunnila cryogenicmicrowavelinkforquantumlocalareanetworks
AT amarx cryogenicmicrowavelinkforquantumlocalareanetworks
AT fdeppe cryogenicmicrowavelinkforquantumlocalareanetworks
AT rgross cryogenicmicrowavelinkforquantumlocalareanetworks
AT kgfedorov cryogenicmicrowavelinkforquantumlocalareanetworks