Cryogenic microwave link for quantum local area networks
Abstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLA...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | npj Quantum Information |
| Online Access: | https://doi.org/10.1038/s41534-025-01046-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849687872228032512 |
|---|---|
| author | W. K. Yam M. Renger S. Gandorfer F. Fesquet M. Handschuh K. E. Honasoge F. Kronowetter Y. Nojiri M. Partanen M. Pfeiffer H. van der Vliet A. J. Matthews J. Govenius R. N. Jabdaraghi M. Prunnila A. Marx F. Deppe R. Gross K. G. Fedorov |
| author_facet | W. K. Yam M. Renger S. Gandorfer F. Fesquet M. Handschuh K. E. Honasoge F. Kronowetter Y. Nojiri M. Partanen M. Pfeiffer H. van der Vliet A. J. Matthews J. Govenius R. N. Jabdaraghi M. Prunnila A. Marx F. Deppe R. Gross K. G. Fedorov |
| author_sort | W. K. Yam |
| collection | DOAJ |
| description | Abstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits. |
| format | Article |
| id | doaj-art-87d870219cbb4b14b0e1936e5d514032 |
| institution | DOAJ |
| issn | 2056-6387 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | npj Quantum Information |
| spelling | doaj-art-87d870219cbb4b14b0e1936e5d5140322025-08-20T03:22:12ZengNature Portfolionpj Quantum Information2056-63872025-05-0111111010.1038/s41534-025-01046-5Cryogenic microwave link for quantum local area networksW. K. Yam0M. Renger1S. Gandorfer2F. Fesquet3M. Handschuh4K. E. Honasoge5F. Kronowetter6Y. Nojiri7M. Partanen8M. Pfeiffer9H. van der Vliet10A. J. Matthews11J. Govenius12R. N. Jabdaraghi13M. Prunnila14A. Marx15F. Deppe16R. Gross17K. G. Fedorov18Walther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenOxford Instruments NanoScienceOxford Instruments NanoScienceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceVTT Technical Research Centre of Finland Ltd. & QTF Centre of ExcellenceWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenWalther-Meißner-Institut, Bayerische Akademie der WissenschaftenAbstract Scalable quantum information processing with superconducting circuits is expected to advance from individual processors located in single dilution refrigerators to more powerful distributed quantum computing systems. The realization of hardware platforms for quantum local area networks (QLANs) compatible with superconducting technology is of high importance in order to achieve a practical quantum advantage. Here, we present a fundamental prototype platform for a microwave QLAN based on a cryogenic link connecting two separate dilution cryostats over a distance of 6.6 m with a base temperature of 52 mK in the center. Superconducting microwave coaxial cables are employed to form a quantum communication channel between the distributed network nodes. We demonstrate the continuous-variable entanglement distribution between the remote dilution refrigerators in the form of two-mode squeezed microwave states, reaching squeezing of 2.10 ± 0.02 dB and negativity of 0.501 ± 0.011. Furthermore, we show that quantum entanglement is preserved at channel center temperatures up to 1 K, paving the way towards microwave quantum communication at elevated temperatures. Consequently, such a QLAN system can form the backbone for future distributed quantum computing with superconducting circuits.https://doi.org/10.1038/s41534-025-01046-5 |
| spellingShingle | W. K. Yam M. Renger S. Gandorfer F. Fesquet M. Handschuh K. E. Honasoge F. Kronowetter Y. Nojiri M. Partanen M. Pfeiffer H. van der Vliet A. J. Matthews J. Govenius R. N. Jabdaraghi M. Prunnila A. Marx F. Deppe R. Gross K. G. Fedorov Cryogenic microwave link for quantum local area networks npj Quantum Information |
| title | Cryogenic microwave link for quantum local area networks |
| title_full | Cryogenic microwave link for quantum local area networks |
| title_fullStr | Cryogenic microwave link for quantum local area networks |
| title_full_unstemmed | Cryogenic microwave link for quantum local area networks |
| title_short | Cryogenic microwave link for quantum local area networks |
| title_sort | cryogenic microwave link for quantum local area networks |
| url | https://doi.org/10.1038/s41534-025-01046-5 |
| work_keys_str_mv | AT wkyam cryogenicmicrowavelinkforquantumlocalareanetworks AT mrenger cryogenicmicrowavelinkforquantumlocalareanetworks AT sgandorfer cryogenicmicrowavelinkforquantumlocalareanetworks AT ffesquet cryogenicmicrowavelinkforquantumlocalareanetworks AT mhandschuh cryogenicmicrowavelinkforquantumlocalareanetworks AT kehonasoge cryogenicmicrowavelinkforquantumlocalareanetworks AT fkronowetter cryogenicmicrowavelinkforquantumlocalareanetworks AT ynojiri cryogenicmicrowavelinkforquantumlocalareanetworks AT mpartanen cryogenicmicrowavelinkforquantumlocalareanetworks AT mpfeiffer cryogenicmicrowavelinkforquantumlocalareanetworks AT hvandervliet cryogenicmicrowavelinkforquantumlocalareanetworks AT ajmatthews cryogenicmicrowavelinkforquantumlocalareanetworks AT jgovenius cryogenicmicrowavelinkforquantumlocalareanetworks AT rnjabdaraghi cryogenicmicrowavelinkforquantumlocalareanetworks AT mprunnila cryogenicmicrowavelinkforquantumlocalareanetworks AT amarx cryogenicmicrowavelinkforquantumlocalareanetworks AT fdeppe cryogenicmicrowavelinkforquantumlocalareanetworks AT rgross cryogenicmicrowavelinkforquantumlocalareanetworks AT kgfedorov cryogenicmicrowavelinkforquantumlocalareanetworks |