Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\)
In this paper, we examine the interplay between the structural and spectral properties of the unit graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/13/12/873 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850086507753242624 |
|---|---|
| author | Amal Alsaluli Wafaa Fakieh Hanaa Alashwali |
| author_facet | Amal Alsaluli Wafaa Fakieh Hanaa Alashwali |
| author_sort | Amal Alsaluli |
| collection | DOAJ |
| description | In this paper, we examine the interplay between the structural and spectral properties of the unit graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msubsup><mi>p</mi><mn>1</mn><msub><mi>r</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>r</mi><mn>2</mn></msub></msubsup><mo>…</mo><msubsup><mi>p</mi><mi>k</mi><msub><mi>r</mi><mi>k</mi></msub></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>1</mn></msub><mo>,</mo><msub><mi>p</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>p</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are distinct primes and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>,</mo><msub><mi>r</mi><mn>1</mn></msub><mo>,</mo><msub><mi>r</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>r</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are positive integers such that at least one of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula> must be greater than 1. We first analyze the structure of the unit graph of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub></semantics></math></inline-formula>, treating it as what we will define as a ‘generalized join graph’ under these conditions. We then determine the Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> and deduce that it is integral for all <i>n</i>. Consequently, we obtain the Laplacian spectral radius and algebraic connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. We also prove that the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mi>p</mi><mi>q</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo><mi>q</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≠</mo><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula>. We deduce the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msup><mi>p</mi><mi>r</mi></msup><msup><mi>q</mi><mi>s</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≠</mo><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula> are primes and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></semantics></math></inline-formula> are positive integers. Finally, we present conjectures regarding the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msub><mi>p</mi><mn>1</mn></msub><msub><mi>p</mi><mn>2</mn></msub><mo>…</mo><msub><mi>p</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msubsup><mi>p</mi><mn>1</mn><msub><mi>r</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>r</mi><mn>2</mn></msub></msubsup><mo>…</mo><msubsup><mi>p</mi><mi>k</mi><msub><mi>r</mi><mi>k</mi></msub></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mi>i</mi></msub></semantics></math></inline-formula> are distinct primes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula> are positive integers, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></semantics></math></inline-formula>. |
| format | Article |
| id | doaj-art-87988fd405c1477d8fbb0cea2f38cabd |
| institution | DOAJ |
| issn | 2075-1680 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Axioms |
| spelling | doaj-art-87988fd405c1477d8fbb0cea2f38cabd2025-08-20T02:43:28ZengMDPI AGAxioms2075-16802024-12-01131287310.3390/axioms13120873Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\)Amal Alsaluli0Wafaa Fakieh1Hanaa Alashwali2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaIn this paper, we examine the interplay between the structural and spectral properties of the unit graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msubsup><mi>p</mi><mn>1</mn><msub><mi>r</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>r</mi><mn>2</mn></msub></msubsup><mo>…</mo><msubsup><mi>p</mi><mi>k</mi><msub><mi>r</mi><mi>k</mi></msub></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mn>1</mn></msub><mo>,</mo><msub><mi>p</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>p</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are distinct primes and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>,</mo><msub><mi>r</mi><mn>1</mn></msub><mo>,</mo><msub><mi>r</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>r</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> are positive integers such that at least one of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula> must be greater than 1. We first analyze the structure of the unit graph of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub></semantics></math></inline-formula>, treating it as what we will define as a ‘generalized join graph’ under these conditions. We then determine the Laplacian spectrum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> and deduce that it is integral for all <i>n</i>. Consequently, we obtain the Laplacian spectral radius and algebraic connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula>. We also prove that the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mrow><mi>p</mi><mi>q</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>2</mn><mo>)</mo><mi>q</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≠</mo><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula>. We deduce the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msup><mi>p</mi><mi>r</mi></msup><msup><mi>q</mi><mi>s</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≠</mo><mi>p</mi><mo><</mo><mi>q</mi></mrow></semantics></math></inline-formula> are primes and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi></mrow></semantics></math></inline-formula> are positive integers. Finally, we present conjectures regarding the vertex connectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><msub><mi mathvariant="double-struck">Z</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msub><mi>p</mi><mn>1</mn></msub><msub><mi>p</mi><mn>2</mn></msub><mo>…</mo><msub><mi>p</mi><mi>k</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><msubsup><mi>p</mi><mn>1</mn><msub><mi>r</mi><mn>1</mn></msub></msubsup><msubsup><mi>p</mi><mn>2</mn><msub><mi>r</mi><mn>2</mn></msub></msubsup><mo>…</mo><msubsup><mi>p</mi><mi>k</mi><msub><mi>r</mi><mi>k</mi></msub></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mi>i</mi></msub></semantics></math></inline-formula> are distinct primes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula> are positive integers, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/13/12/873unit graph<i>G</i>-generalized join graphLaplacian spectral radiusalgebraic connectivityring of integers modulo <i>n</i> |
| spellingShingle | Amal Alsaluli Wafaa Fakieh Hanaa Alashwali Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) Axioms unit graph <i>G</i>-generalized join graph Laplacian spectral radius algebraic connectivity ring of integers modulo <i>n</i> |
| title | Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) |
| title_full | Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) |
| title_fullStr | Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) |
| title_full_unstemmed | Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) |
| title_short | Laplacian Spectrum and Vertex Connectivity of the Unit Graph of the Ring \({ℤ_{p^{r}q^{s}}}\) |
| title_sort | laplacian spectrum and vertex connectivity of the unit graph of the ring z p r q s |
| topic | unit graph <i>G</i>-generalized join graph Laplacian spectral radius algebraic connectivity ring of integers modulo <i>n</i> |
| url | https://www.mdpi.com/2075-1680/13/12/873 |
| work_keys_str_mv | AT amalalsaluli laplacianspectrumandvertexconnectivityoftheunitgraphoftheringzprqs AT wafaafakieh laplacianspectrumandvertexconnectivityoftheunitgraphoftheringzprqs AT hanaaalashwali laplacianspectrumandvertexconnectivityoftheunitgraphoftheringzprqs |