Fuzzy Logic Expert System for Classifying Solonchaks of Algeria

Under arid and semiarid regions of the North of Africa, the soils considered as Solonchaks contain both calcium carbonate and gypsum. When these elements are presented at high quantities, these Solonchaks are getting close to Calcisol or Gypsisol. The World Reference Base (WRB) for soil classificati...

Full description

Saved in:
Bibliographic Details
Main Authors: Samir Hadj Miloud, Kaddour Djili, Mohamed Benidir
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Applied and Environmental Soil Science
Online Access:http://dx.doi.org/10.1155/2018/8741567
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under arid and semiarid regions of the North of Africa, the soils considered as Solonchaks contain both calcium carbonate and gypsum. When these elements are presented at high quantities, these Solonchaks are getting close to Calcisol or Gypsisol. The World Reference Base (WRB) for soil classification does not take into account the soil as a continuum. Instead, this international soil system classification is based on threshold values that define hierarchical diagnostic criteria. Consequently, the distinction between Solonchaks, Calcisol, and Gypsisol is still not clear. To avoid this situation, fuzzy logic based on the Mamdani inference system (MFIS) was used to determine to what extent soil classified as Solonchak in WRB can interfere with Calcisols and Gypsisols. For that purpose, membership values of Solonchaks (Is), Calcisols (Ic), and Gypsisols (Ig) indices were calculated from 194 soil profiles previously classified as Solonchak in WRB. Data analyses revealed that Solonchaks soils were subdivided into Solonchaks (61%), Calcisols (1%), Gypsisols (0.5%), Solonchaks-Calcisols intergrades (29%), Solonchaks-Gypsisols intergrades (5%), and Solonchaks-Calcisols-Gypsisols intergrades (2%). Moreover, Is, Ic, and Ig showed high significant correlations with almost all WRB diagnostic criteria (P<0.05). Under our study, soil classification obtained by employing MFIS was analogous to that provided by WRB; however, MFIS exhibited high precision concerning the membership value between soils and their intergrades. Therefore, the application of MFIS for other soil classifications in the world is possible and could lead to improvement in conventional soil classification.
ISSN:1687-7667
1687-7675