There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$
We complete the work of Lanneau–Möller [4] to show that there are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$.
Saved in:
| Main Authors: | Boulanger, Julien, Freedman, Sam |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2024-03-01
|
| Series: | Comptes Rendus. Mathématique |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.551/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Dimensions of Prym varieties
by: Amy E. Ksir
Published: (2001-01-01) -
The Universal Teichmüller Space and Function Space
by: Yutong Liu, et al.
Published: (2020-01-01) -
On Geodesic Segments in the Infinitesimal Asymptotic Teichmüller Spaces
by: Yan Wu, et al.
Published: (2015-01-01) -
Nuclearity and ${\mathrm {CPC}^*}$ -Systems
by: Kristin Courtney, et al.
Published: (2025-01-01) -
L’avènement de la science météorologique du XVII$^{\protect \mathrm{e}}$ au XIX$^{\protect \mathrm{e}}$ siècle
by: Beaudouin, Denis
Published: (2023-09-01)