Vibration Deformation Measurement and Defect Identification Based on Time-Averaged Digital Holography

Based on time-averaged digital holography, a vibration deformation measurement system was designed and a full process reconstruction and identification strategy was developed for detecting the micro-defects in optical materials. Through the double beam expansion setting and off-axis imaging adjustme...

Full description

Saved in:
Bibliographic Details
Main Authors: Dongyang Hu, Chen Wang, Di Li, Weiyu Xu, Xiangchao Zhang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/4/373
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on time-averaged digital holography, a vibration deformation measurement system was designed and a full process reconstruction and identification strategy was developed for detecting the micro-defects in optical materials. Through the double beam expansion setting and off-axis imaging adjustments, it is suitable for measuring optical materials with non-specular surfaces by double exposure shots. The scheme was applied to optical sandwich composites and 3D printed glass. Abnormal amplitudes occur at the defects due to different resonance frequencies, resulting in anomalous vibrations under excitation, and the differences in the amplitudes and phases before and after vibration can effectively characterize vibration amplitude and subsurface defects, proving that this method has a high detecting sensitivity.
ISSN:2304-6732