Application of Central Composite Design in the Adsorption of Ca(II) on Metakaolin Zeolite

Metakaolin zeolite-A was synthesized from thermally activated kaolin clay and characterized by Fourier Transform Infrared Spectroscopy and X-Ray Diffraction Spectroscopy. The effects of pH (2–10), contact time (10–180 min), initial concentration (5–120 mgL−1), and dosage (0.1–2 g) and their interact...

Full description

Saved in:
Bibliographic Details
Main Authors: Upenyu Guyo, Lycenter Yard Phiri, Fidelis Chigondo
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2017/7025073
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metakaolin zeolite-A was synthesized from thermally activated kaolin clay and characterized by Fourier Transform Infrared Spectroscopy and X-Ray Diffraction Spectroscopy. The effects of pH (2–10), contact time (10–180 min), initial concentration (5–120 mgL−1), and dosage (0.1–2 g) and their interactions were investigated using response surface methodology following a central composite design. Optimum removal (87.70%) was obtained at pH 6, contact time 180 min, initial concentration 40.0 mgL−1, and adsorbent dosage 1.0 g by Excel Solver using the GRG solving method. The adsorption data fitted best to the Langmuir model with correlation coefficient R2=0.993 and Chi-square value χ2=4.76. The Freundlich isotherm gave a correlation coefficient R2=0.933 and χ2=37.91. The adsorption process followed the pseudo-second-order model. The calculated thermodynamic parameters showed that the adsorption process was endothermic and not thermodynamically spontaneous. The studied zeolite-A can therefore be used as a promising adsorbent for the removal of Ca(II) ions from aqueous solutions.
ISSN:2090-9063
2090-9071