Influence of liquid metal embrittlement on the failure behavior of dissimilar spot welds with advanced high-strength steel: A component study

This study investigates the effects of liquid metal embrittlement (LME) cracks on the mechanical performance of resistance spot-welded joints in zinc-coated advanced high-strength steel (AHSS) at the component level. To this end, a novel component-level test specimen featuring a hat and L-shaped pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Keke Yang, Matthias Sowada, Viktoria Olfert, Georg Seitz, Vincent Schreiber, Marcel Heitmann, David Hein, Max Biegler, Sven Jüttner, Michael Rethmeier, Gerson Meschut
Format: Article
Language:English
Published: Elsevier 2024-11-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785424026942
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the effects of liquid metal embrittlement (LME) cracks on the mechanical performance of resistance spot-welded joints in zinc-coated advanced high-strength steel (AHSS) at the component level. To this end, a novel component-level test specimen featuring a hat and L-shaped profile was developed to identify critical failure points under three-point bending loads. Load-bearing capacity tests were subsequently conducted under both quasi-static and impact loading conditions, specifically targeting LME cracks with an average depth reaching 63.6% of the sheet thickness. By monitoring the surface strain of spot welds affected by LME cracks, the study visualizes stress concentration effects at the crack tips and traces the propagation of these cracks into the base material, which ultimately leads to material tearing and joint failure. The findings reveal that the effect of LME cracks in reducing load-bearing capacity is more pronounced under impact loading than under quasi-static loading, highlighting a previously underexplored aspect of LME behavior under impact loading. Specifically, the peak load decreased by 3.9% and 10.8%, while energy absorption declined by 52.2% and 78.3% under quasi-static and impact loading, respectively.
ISSN:2238-7854