Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles
This study proposes a deep learning-based vertical decomposition model for ionospheric Total Electron Content (TEC), which establishes a nonlinear mapping from macroscale TEC data to vertically layered electron density (Ne) spanning 60–800 km by integrating geomagnetic indices (AE, SYM-H) and solar...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/5/598 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study proposes a deep learning-based vertical decomposition model for ionospheric Total Electron Content (TEC), which establishes a nonlinear mapping from macroscale TEC data to vertically layered electron density (Ne) spanning 60–800 km by integrating geomagnetic indices (AE, SYM-H) and solar activity parameters (F10.7). Utilizing global TEC grid data (spatiotemporal resolution: 1 h/5.625° × 2.8125°) provided by the International GNSS Service (IGS), a Multilayer Perceptron (MLP) model was developed, taking spatiotemporal coordinates, altitude, and space environment parameters as inputs to predict logarithmic electron density ln(Ne). Experimental validation against COSMIC-2 radio occultation observations in 2019 demonstrates the model’s capability to capture ionospheric vertical structures, with a prediction performance significantly outperforming the International Reference Ionosphere model IRI-2020: root mean square error (RMSE) decreased by 34.16%, and the coefficient of determination (R<sup>2</sup>) increased by 28.45%. This method overcomes the reliance of traditional electron density inversion on costly radar or satellite observations, enabling high-spatiotemporal-resolution global ionospheric profile reconstruction using widely available GNSS-TEC data. It provides a novel tool for space weather warning and shortwave communication optimization. Current limitations include insufficient physical interpretability and prediction uncertainty in GNSS-sparse regions, which could be mitigated in future work through the integration of physical constraints and multi-source data assimilation. |
|---|---|
| ISSN: | 2073-4433 |