YOLO for early detection and management of Tuta absoluta-induced tomato leaf diseases

The agricultural sector faces persistent threats from plant diseases and pests, with Tuta absoluta posing a severe risk to tomato farming by causing up to 100% crop loss. Timely pest detection is essential for effective intervention, yet traditional methods remain labor-intensive and inefficient. Re...

Full description

Saved in:
Bibliographic Details
Main Authors: Harisu Abdullahi Shehu, Aniebietabasi Ackley, Marvellous Mark, Ofem Ebriba Eteng, Md. Haidar Sharif, Huseyin Kusetogullari
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-05-01
Series:Frontiers in Plant Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpls.2025.1524630/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The agricultural sector faces persistent threats from plant diseases and pests, with Tuta absoluta posing a severe risk to tomato farming by causing up to 100% crop loss. Timely pest detection is essential for effective intervention, yet traditional methods remain labor-intensive and inefficient. Recent advancements in deep learning offer promising solutions, with YOLOv8 emerging as a leading real-time detection model due to its speed and accuracy, outperforming previous models in on-field deployment. This study focuses on the early detection of Tuta absoluta-induced tomato leaf diseases in Sub-Saharan Africa. The first major contribution is the annotation of a dataset (TomatoEbola), which consists of 326 images and 784 annotations collected from three different farms and is now publicly available. The second key contribution is the proposal of a transfer learning-based approach to evaluate YOLOv8’s performance in detecting Tuta absoluta. Experimental results highlight the model’s effectiveness, with a mean average precision of up to 0.737, outperforming other state-of-the-art methods that achieve less than 0.69, demonstrating its capability for real-world deployment. These findings suggest that AI-driven solutions like YOLOv8 could play a pivotal role in reducing agricultural losses and enhancing food security.
ISSN:1664-462X