AI-assisted SERS imaging method for label-free and rapid discrimination of clinical lymphoma
Abstract Background Lymphoma is a malignant tumor of the immune system and its incidence is increasing year after year, causing a major threat to people's health. Conventional diagnosis of lymphoma basically depends on histological images consuming long-time and tedious manipulations (e.g., 7–1...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-04-01
|
| Series: | Journal of Nanobiotechnology |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12951-025-03339-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Lymphoma is a malignant tumor of the immune system and its incidence is increasing year after year, causing a major threat to people's health. Conventional diagnosis of lymphoma basically depends on histological images consuming long-time and tedious manipulations (e.g., 7–15 days) and large-field view (e.g., > 1000 × 1000 μm2). Artificial intelligence has recently revolutionized cancer diagnosis by training pathological image databases via deep learning. Current approaches, however, remain dependent on analyzing wide-field pathological images to detect distinct nuclear, cytologic, and histomorphologic traits for diagnostic categorization, limiting their applicability to minimally invasive lesion. Results Herein, we develop a molecular imaging strategy for minimally invasive lymphoma diagnosis. By spreading lymphoma tissue sections tightly on a surface-enhanced Raman scattering (SERS) chip, label-free images of DNA double strand breaks (DSBs) in 30 × 30 μm2 tissue sections could be achieved in ~ 15 min. To establish a proof of concept, the Raman image datasets collected from clinical samples of normal lymphatic tissues and non-Hodgkin's lymphoma (NHL) tissues were well organized and trained in a deep convolutional neural network model, finally achieving a recognition rate of ~ 91.7 ± 2.1%. Conclusions The molecular imaging strategy for minimally invasive lymphoma diagnosis that can achieve a recognition rate of ~ 91.7 ± 2.1%. We anticipate that these results will catalyze the development of a series of histological SERS-AI technologies for diagnosing various diseases, including other types of cancer. In this work, we present a reliable tool to facilitate clinicians in the diagnosis of lymphoma. Graphical Abstract |
|---|---|
| ISSN: | 1477-3155 |