Adaptive Global Dense Nested Reasoning Network into Small Target Detection in Large-Scale Hyperspectral Remote Sensing Image
Small and dim target detection is a critical challenge in hyperspectral remote sensing, particularly in complex, large-scale scenes where spectral variability across diverse land cover types complicates the detection process. In this paper, we propose a novel target reasoning algorithm named Adaptiv...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/6/948 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Small and dim target detection is a critical challenge in hyperspectral remote sensing, particularly in complex, large-scale scenes where spectral variability across diverse land cover types complicates the detection process. In this paper, we propose a novel target reasoning algorithm named Adaptive Global Dense Nested Reasoning Network (AGDNR). This algorithm integrates spatial, spectral, and domain knowledge to enhance the detection accuracy of small and dim targets in large-scale environments and simultaneously enables reasoning about target categories. The proposed method involves three key innovations. Firstly, we develop a high-dimensional, multi-layer nested U-Net that facilitates cross-layer feature transfer, preserving high-level features of small and dim targets throughout the network. Secondly, we present a novel approach for computing physicochemical parameters, which enhances the spectral characteristics of targets while minimizing environmental interference. Thirdly, we construct a geographic knowledge graph that incorporates both target and environmental information, enabling global target reasoning and more effective detection of small targets across large-scale scenes. Experimental results on three challenging datasets show that our method outperforms state-of-the-art approaches in detection accuracy and achieves successful classification of different small targets. Consequently, the proposed method offers a robust solution for the precise detection of hyperspectral small targets in large-scale scenarios. |
|---|---|
| ISSN: | 2072-4292 |