Fabrication and Characterization of CH3NH3PbI3 Perovskite Solar Cells Added with Polysilanes

Effects of polysilane additions on CH3NH3PbI3 perovskite solar cells were investigated. Photovoltaic cells were fabricated by a spin-coating method using perovskite precursor solutions with polymethyl phenylsilane, polyphenylsilane, or decaphenyl cyclopentasilane (DPPS), and the microstructures were...

Full description

Saved in:
Bibliographic Details
Main Authors: Takeo Oku, Junya Nomura, Atsushi Suzuki, Hiroki Tanaka, Sakiko Fukunishi, Satoshi Minami, Shinichiro Tsukada
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2018/8654963
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effects of polysilane additions on CH3NH3PbI3 perovskite solar cells were investigated. Photovoltaic cells were fabricated by a spin-coating method using perovskite precursor solutions with polymethyl phenylsilane, polyphenylsilane, or decaphenyl cyclopentasilane (DPPS), and the microstructures were examined by X-ray diffraction and optical microscopy. Open-circuit voltages were increased by introducing these polysilanes, and short-circuit current density was increased by the DPPS addition, which resulted in the improvement of the photoconversion efficiencies to 10.46%. The incident photon-to-current conversion efficiencies were also increased in the range of 400~750 nm. Microstructure analysis indicated the formation of a dense interfacial structure by grain growth and increase of surface coverage of the perovskite layer with DPPS, and the formation of PbI2 was suppressed, leading to the improvement of photovoltaic properties.
ISSN:1110-662X
1687-529X