Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach

The dataset developed within the PlasticObs+ project aims to facilitate a multi-resolution approach for detecting and quantifying anthropogenic litter through areal images. Traditional detection methods often suffer from narrow, use-case-specific limitations, reducing their transferability. To addre...

Full description

Saved in:
Bibliographic Details
Main Authors: Robert Rettig, Felix Becker, Alexander Berghoff, Tobias Binkele, Wolfram Michael Butter, Tilman Floehr, Martin Kumm, Carolin Leluschko, Florian Littau, Elmar Reinders, Eike Rodenbäck, Tobias Schmid, Sabine Schründer, Sören Schweigert, Michael Sinhuber, Jens Wellhausen, Frederic Stahl, Christoph Tholen
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Data
Subjects:
Online Access:https://www.mdpi.com/2306-5729/10/7/113
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246333782720512
author Robert Rettig
Felix Becker
Alexander Berghoff
Tobias Binkele
Wolfram Michael Butter
Tilman Floehr
Martin Kumm
Carolin Leluschko
Florian Littau
Elmar Reinders
Eike Rodenbäck
Tobias Schmid
Sabine Schründer
Sören Schweigert
Michael Sinhuber
Jens Wellhausen
Frederic Stahl
Christoph Tholen
author_facet Robert Rettig
Felix Becker
Alexander Berghoff
Tobias Binkele
Wolfram Michael Butter
Tilman Floehr
Martin Kumm
Carolin Leluschko
Florian Littau
Elmar Reinders
Eike Rodenbäck
Tobias Schmid
Sabine Schründer
Sören Schweigert
Michael Sinhuber
Jens Wellhausen
Frederic Stahl
Christoph Tholen
author_sort Robert Rettig
collection DOAJ
description The dataset developed within the PlasticObs+ project aims to facilitate a multi-resolution approach for detecting and quantifying anthropogenic litter through areal images. Traditional detection methods often suffer from narrow, use-case-specific limitations, reducing their transferability. To address this, an image dataset was created featuring various spatial and spectral resolutions. The highest spatial resolution images (ground sampling distance = 0.2 cm) were used to generate a labeled dataset, which was georeferenced for mapping onto coarser-resolution images.
format Article
id doaj-art-861fc54daf264a77a5ff1a53beb0c3d9
institution Kabale University
issn 2306-5729
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Data
spelling doaj-art-861fc54daf264a77a5ff1a53beb0c3d92025-08-20T03:58:31ZengMDPI AGData2306-57292025-07-0110711310.3390/data10070113Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor ApproachRobert Rettig0Felix Becker1Alexander Berghoff2Tobias Binkele3Wolfram Michael Butter4Tilman Floehr5Martin Kumm6Carolin Leluschko7Florian Littau8Elmar Reinders9Eike Rodenbäck10Tobias Schmid11Sabine Schründer12Sören Schweigert13Michael Sinhuber14Jens Wellhausen15Frederic Stahl16Christoph Tholen17German Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, Germanyeverwave GmbH, 52062 Aachen, GermanyDepartment of Engineering Sciences, Jade University of Applied Sciences, 26389 Wilhelmshaven, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyDepartment of Engineering Sciences, Jade University of Applied Sciences, 26389 Wilhelmshaven, Germanyeverwave GmbH, 52062 Aachen, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyOptimare Systems GmbH, 27572 Bremerhaven, GermanyDepartment of Engineering Sciences, Jade University of Applied Sciences, 26389 Wilhelmshaven, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyGerman Research Center for Artificial Intelligence, 26129 Oldenburg, GermanyThe dataset developed within the PlasticObs+ project aims to facilitate a multi-resolution approach for detecting and quantifying anthropogenic litter through areal images. Traditional detection methods often suffer from narrow, use-case-specific limitations, reducing their transferability. To address this, an image dataset was created featuring various spatial and spectral resolutions. The highest spatial resolution images (ground sampling distance = 0.2 cm) were used to generate a labeled dataset, which was georeferenced for mapping onto coarser-resolution images.https://www.mdpi.com/2306-5729/10/7/113anthropogenic litterplastic litter pollutionlitter object detectiondataset annotationmulti-resolutionmulti-sensor
spellingShingle Robert Rettig
Felix Becker
Alexander Berghoff
Tobias Binkele
Wolfram Michael Butter
Tilman Floehr
Martin Kumm
Carolin Leluschko
Florian Littau
Elmar Reinders
Eike Rodenbäck
Tobias Schmid
Sabine Schründer
Sören Schweigert
Michael Sinhuber
Jens Wellhausen
Frederic Stahl
Christoph Tholen
Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
Data
anthropogenic litter
plastic litter pollution
litter object detection
dataset annotation
multi-resolution
multi-sensor
title Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
title_full Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
title_fullStr Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
title_full_unstemmed Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
title_short Multi-Resolution Remote Sensing Dataset for the Detection of Anthropogenic Litter: A Multi-Platform and Multi-Sensor Approach
title_sort multi resolution remote sensing dataset for the detection of anthropogenic litter a multi platform and multi sensor approach
topic anthropogenic litter
plastic litter pollution
litter object detection
dataset annotation
multi-resolution
multi-sensor
url https://www.mdpi.com/2306-5729/10/7/113
work_keys_str_mv AT robertrettig multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT felixbecker multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT alexanderberghoff multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT tobiasbinkele multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT wolframmichaelbutter multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT tilmanfloehr multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT martinkumm multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT carolinleluschko multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT florianlittau multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT elmarreinders multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT eikerodenback multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT tobiasschmid multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT sabineschrunder multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT sorenschweigert multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT michaelsinhuber multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT jenswellhausen multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT fredericstahl multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach
AT christophtholen multiresolutionremotesensingdatasetforthedetectionofanthropogeniclitteramultiplatformandmultisensorapproach