Path planning algorithm for WCE with joint energy replenishment and data collection based on multi-objective optimization

Considering limited energy of the wireless charging equipment (WCE) in wireless rechargeable sensor network,an energy replenishment strategy and a data collection strategy are designed.On the basis of these,a path planning model for WCE with functions of joint energy replenishment and data collectio...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhenchun WEI, Renhao SUN, Zengwei LYU, Jianghong HAN, Lei SHI, Junyi XU
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2018-10-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2018216/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering limited energy of the wireless charging equipment (WCE) in wireless rechargeable sensor network,an energy replenishment strategy and a data collection strategy are designed.On the basis of these,a path planning model for WCE with functions of joint energy replenishment and data collection based on multi-objective optimization is constructed with two optimization objectives,maximizing the total energy utility of WCE and minimizing the average delay of data transmission of all the sensor nodes in the network.To deal with it,a multi-objective ant colony optimization algorithm based on elitist strategy was proposed,where the state transition strategy and the pheromone updating strategy were improved.Then,the Pareto set was obtained in terms of this multi-objective optimization problem.The parameter setting of ant colony algorithm’s effects on the proposed algorithm were analyzed under 20 sensor nodes.50 groups of contrastive experiments show that the average number of energy utilization obtained by ES-MOAC algorithm is 4.53% higher than that of NSGA-II algorithm.The average number of average delay of all node data transmission obtained by ES-MOAC algorithm is 5.12% lower than that of NSGA-II algorithm.
ISSN:1000-436X