The transport of polyphenols from Camellia fascicularis in Caco-2 cells based on UPLC-ESI-MS/MS

Camellia fascicularis, as a food and medicinal plant, is rich in polyphenols. Herein, digestion samples (DS) of C. fascicularis polyphenols (CFPs) were metabolically analyzed based on their bidirectional translocation in Caco-2 cells using ultraperformance liquid chromatography-electrospray ionizati...

Full description

Saved in:
Bibliographic Details
Main Authors: Shengjiang Duan, Hao Zheng, Junrong Tang, Huan Kan, Changwei Cao, Zhijiao Shi, Yun Liu
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Food Chemistry: X
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590157525000872
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Camellia fascicularis, as a food and medicinal plant, is rich in polyphenols. Herein, digestion samples (DS) of C. fascicularis polyphenols (CFPs) were metabolically analyzed based on their bidirectional translocation in Caco-2 cells using ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry. The results indicated that after DS transported via Caco-2 cell monolayer models nine polyphenol compounds in transit solution (TSB) from apical (AP) to basolateral (BL) side were upregulated, whereas seven in the transit solution (TSA) from BL to AP side were upregulated. In addition, 53 significantly different polyphenol compounds dominated by flavonoids were identified in the TSA vs. TSB groups, with a dominantly moderate degree of uptake. Among them, 40 polyphenol compounds were upregulated including eupatorin, 5,7,4′-trihydroxy-3,6,3′,5′-tetramethoxyflavone, and jaceosidin-7-O-glucoside, which might exhibit active transport, whereas the remaining 13 were downregulated and might exhibit passive diffusive transport. This study offers a rationale that further explored the bioactive mechanisms of CFPs.
ISSN:2590-1575