Probabilistic Routing Based on Two-Hop Information in Delay/Disruption Tolerant Networks

We investigate an opportunistic routing protocol in delay/disruption tolerant networks (DTNs) where the end-to-end path between source and destination nodes may not exist for most of the time. Probabilistic routing protocol using history of encounters and transitivity (PRoPHET) is an efficient histo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu Wang, Rongxi He, Bin Lin, Ying Wang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/918065
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate an opportunistic routing protocol in delay/disruption tolerant networks (DTNs) where the end-to-end path between source and destination nodes may not exist for most of the time. Probabilistic routing protocol using history of encounters and transitivity (PRoPHET) is an efficient history-based routing protocol specifically proposed for DTNs, which only utilizes the delivery predictability of one-hop neighbors to make a decision for message forwarding. In order to further improve the message delivery rate and to reduce the average overhead of PRoPHET, in this paper we propose an improved probabilistic routing algorithm (IPRA), where the history information of contacts for the immediate encounter and two-hop neighbors has been jointly used to make an informed decision for message forwarding. Based on the Opportunistic Networking Environment (ONE) simulator, the performance of IPRA has been evaluated via extensive simulations. The results show that IPRA can significantly improve the average delivery rate while achieving a better or comparable performance with respect to average overhead, average delay, and total energy consumption compared with the existing algorithms.
ISSN:2090-0147
2090-0155