Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations

The Chelyabinsk meteor entered Earth’s atmosphere on 15 February 2013, producing a shock wave that injured about 1500 people and damaged thousands of buildings. Despite its relatively large size (∼20 m), the progenitor asteroid approached Earth undetected. Its apparent radiant was too close to the S...

Full description

Saved in:
Bibliographic Details
Main Authors: Thomas Müller, Luca Conversi, Javier Licandro, Marco Delbo, Alan Fitzsimmons, Karri Muinonen, Marcel Popescu, Paolo Tanga, Richard Moissl
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advances in Astronomy
Online Access:http://dx.doi.org/10.1155/aa/3207732
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849318265078153216
author Thomas Müller
Luca Conversi
Javier Licandro
Marco Delbo
Alan Fitzsimmons
Karri Muinonen
Marcel Popescu
Paolo Tanga
Richard Moissl
author_facet Thomas Müller
Luca Conversi
Javier Licandro
Marco Delbo
Alan Fitzsimmons
Karri Muinonen
Marcel Popescu
Paolo Tanga
Richard Moissl
author_sort Thomas Müller
collection DOAJ
description The Chelyabinsk meteor entered Earth’s atmosphere on 15 February 2013, producing a shock wave that injured about 1500 people and damaged thousands of buildings. Despite its relatively large size (∼20 m), the progenitor asteroid approached Earth undetected. Its apparent radiant was too close to the Sun for standard ground-based near-Earth asteroid (NEA) surveys operating in the visible light. In addition, it would have been very faint due to an observing geometry at a large phase angle, and very fast moving. We examine the potential for early detection with current and upcoming infrared (IR) space telescopes, such as NASA’s upcoming NEOSurveyor mission and ESA’s planned NEOMIR mission. We use the 20-m Chelyabinsk progenitor to demonstrate detection possibilities and limitations of an object on a day-side trajectory before impact. IR observations from space offer key advantages like an enhanced Sun-asteroid contrast (compared to visible wavelengths). The small, fast-rotating objects are (nearly) isothermal which make IR detections at high phase angles easier compared to visible-light ones, and allow for radiometric size estimation. The latter is crucial for immediate assessment of the impact risk. The Chelyabinsk asteroid would have entered the field-of-regard about 39 h (NEO Surveyor) or 54 h (NEOMIR) before impact. However, we find that a 20-m object on a Chelyabinsk progenitor orbit could be detected theoretically with a 0.5-m telescope in space (located at the Lagrangian point L1), at mid-IR wavelengths, with a lead time of 5–12 days. The large uncertainty in the calculation of the detection lead-time is mainly related to uncertainties in the flux predictions for small, possibly fast-rotating asteroids seen under very extreme phase angles. However, technical challenges, including detector operations at high sky background due to the low solar elongation, telescope straylight problems for observations close to the Sun, near real-time application of synthetic tracking techniques, and fast orbit determination also must be overcome to achieve reliable early warning capabilities.
format Article
id doaj-art-85b1c171a3e54841bef745ca56136f9f
institution Kabale University
issn 1687-7977
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Advances in Astronomy
spelling doaj-art-85b1c171a3e54841bef745ca56136f9f2025-08-20T03:50:54ZengWileyAdvances in Astronomy1687-79772025-01-01202510.1155/aa/3207732Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and LimitationsThomas Müller0Luca Conversi1Javier Licandro2Marco Delbo3Alan Fitzsimmons4Karri Muinonen5Marcel Popescu6Paolo Tanga7Richard Moissl8Department of High-Energy AstrophysicsPlanetary Defence Office NEO Coordination CentreInstituto de Astrofísica de CanariasLaboratoire LagrangeAstrophysics Research CentreDepartment of PhysicsAstronomical Institute of the Romanian AcademyLaboratoire LagrangePlanetary Defence Office NEO Coordination CentreThe Chelyabinsk meteor entered Earth’s atmosphere on 15 February 2013, producing a shock wave that injured about 1500 people and damaged thousands of buildings. Despite its relatively large size (∼20 m), the progenitor asteroid approached Earth undetected. Its apparent radiant was too close to the Sun for standard ground-based near-Earth asteroid (NEA) surveys operating in the visible light. In addition, it would have been very faint due to an observing geometry at a large phase angle, and very fast moving. We examine the potential for early detection with current and upcoming infrared (IR) space telescopes, such as NASA’s upcoming NEOSurveyor mission and ESA’s planned NEOMIR mission. We use the 20-m Chelyabinsk progenitor to demonstrate detection possibilities and limitations of an object on a day-side trajectory before impact. IR observations from space offer key advantages like an enhanced Sun-asteroid contrast (compared to visible wavelengths). The small, fast-rotating objects are (nearly) isothermal which make IR detections at high phase angles easier compared to visible-light ones, and allow for radiometric size estimation. The latter is crucial for immediate assessment of the impact risk. The Chelyabinsk asteroid would have entered the field-of-regard about 39 h (NEO Surveyor) or 54 h (NEOMIR) before impact. However, we find that a 20-m object on a Chelyabinsk progenitor orbit could be detected theoretically with a 0.5-m telescope in space (located at the Lagrangian point L1), at mid-IR wavelengths, with a lead time of 5–12 days. The large uncertainty in the calculation of the detection lead-time is mainly related to uncertainties in the flux predictions for small, possibly fast-rotating asteroids seen under very extreme phase angles. However, technical challenges, including detector operations at high sky background due to the low solar elongation, telescope straylight problems for observations close to the Sun, near real-time application of synthetic tracking techniques, and fast orbit determination also must be overcome to achieve reliable early warning capabilities.http://dx.doi.org/10.1155/aa/3207732
spellingShingle Thomas Müller
Luca Conversi
Javier Licandro
Marco Delbo
Alan Fitzsimmons
Karri Muinonen
Marcel Popescu
Paolo Tanga
Richard Moissl
Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
Advances in Astronomy
title Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
title_full Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
title_fullStr Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
title_full_unstemmed Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
title_short Preimpact Detection of Chelyabinsk-Type Objects in the Thermal Infrared: Possibilities and Limitations
title_sort preimpact detection of chelyabinsk type objects in the thermal infrared possibilities and limitations
url http://dx.doi.org/10.1155/aa/3207732
work_keys_str_mv AT thomasmuller preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT lucaconversi preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT javierlicandro preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT marcodelbo preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT alanfitzsimmons preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT karrimuinonen preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT marcelpopescu preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT paolotanga preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations
AT richardmoissl preimpactdetectionofchelyabinsktypeobjectsinthethermalinfraredpossibilitiesandlimitations