Complex Convexity of Musielak-Orlicz Function Spaces Equipped with the p-Amemiya Norm

The complex convexity of Musielak-Orlicz function spaces equipped with the p-Amemiya norm is mainly discussed. It is obtained that, for any Musielak-Orlicz function space equipped with the p-Amemiya norm when 1≤p<∞, complex strongly extreme points of the unit ball coincide with complex extreme p...

Full description

Saved in:
Bibliographic Details
Main Authors: Lili Chen, Yunan Cui, Yanfeng Zhao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/190203
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complex convexity of Musielak-Orlicz function spaces equipped with the p-Amemiya norm is mainly discussed. It is obtained that, for any Musielak-Orlicz function space equipped with the p-Amemiya norm when 1≤p<∞, complex strongly extreme points of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in above spaces are given. Criteria for complex strict convexity and complex midpoint locally uniform convexity of above spaces are also deduced.
ISSN:1085-3375
1687-0409