Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection

Abstract Recent studies have suggested that stratospheric aerosol injection (SAI) of solid particles for climate intervention could reduce stratospheric warming compared to injection of SO2. However, interactions of microphysical processes, such as settling and coagulation of solid particles, with s...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Vattioni, S. K. Käslin, J. A. Dykema, L. Beiping, T. Sukhodolov, J. Sedlacek, F. N. Keutsch, T. Peter, G. Chiodo
Format: Article
Language:English
Published: Wiley 2024-10-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2024GL110575
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850077797012209664
author S. Vattioni
S. K. Käslin
J. A. Dykema
L. Beiping
T. Sukhodolov
J. Sedlacek
F. N. Keutsch
T. Peter
G. Chiodo
author_facet S. Vattioni
S. K. Käslin
J. A. Dykema
L. Beiping
T. Sukhodolov
J. Sedlacek
F. N. Keutsch
T. Peter
G. Chiodo
author_sort S. Vattioni
collection DOAJ
description Abstract Recent studies have suggested that stratospheric aerosol injection (SAI) of solid particles for climate intervention could reduce stratospheric warming compared to injection of SO2. However, interactions of microphysical processes, such as settling and coagulation of solid particles, with stratospheric dynamics have not been considered. Using a global chemistry‐climate model with interactive solid particle microphysics, we show that agglomeration significantly reduces the backscatter efficiency per unit of injected material compared to mono‐disperse particles, partly due to faster settling of the agglomerates, but mainly due to increased forward‐ over backscattering with increasing agglomerate size. Despite these effects, some materials substantially reduce required injection rates as well as perturbation of stratospheric winds, age of air and stratospheric warming compared to injection of SO2, with the most promising results being shown by 150 nm diamond particles. Uncertainties remain as to whether stratospheric dispersion of solid particles is feasible without formation of agglomerates.
format Article
id doaj-art-8576eb8cbc4b402e8217c75639e87148
institution DOAJ
issn 0094-8276
1944-8007
language English
publishDate 2024-10-01
publisher Wiley
record_format Article
series Geophysical Research Letters
spelling doaj-art-8576eb8cbc4b402e8217c75639e871482025-08-20T02:45:43ZengWileyGeophysical Research Letters0094-82761944-80072024-10-015119n/an/a10.1029/2024GL110575Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle InjectionS. Vattioni0S. K. Käslin1J. A. Dykema2L. Beiping3T. Sukhodolov4J. Sedlacek5F. N. Keutsch6T. Peter7G. Chiodo8Institute for Atmospheric and Climate Science ETH Zurich Zurich SwitzerlandInstitute for Atmospheric and Climate Science ETH Zurich Zurich SwitzerlandJohn A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USAInstitute for Atmospheric and Climate Science ETH Zurich Zurich SwitzerlandPhysikalisch‐Meteorologisches Observatorium Davos and World Radiation Center Davos SwitzerlandPhysikalisch‐Meteorologisches Observatorium Davos and World Radiation Center Davos SwitzerlandJohn A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USAInstitute for Atmospheric and Climate Science ETH Zurich Zurich SwitzerlandInstitute for Atmospheric and Climate Science ETH Zurich Zurich SwitzerlandAbstract Recent studies have suggested that stratospheric aerosol injection (SAI) of solid particles for climate intervention could reduce stratospheric warming compared to injection of SO2. However, interactions of microphysical processes, such as settling and coagulation of solid particles, with stratospheric dynamics have not been considered. Using a global chemistry‐climate model with interactive solid particle microphysics, we show that agglomeration significantly reduces the backscatter efficiency per unit of injected material compared to mono‐disperse particles, partly due to faster settling of the agglomerates, but mainly due to increased forward‐ over backscattering with increasing agglomerate size. Despite these effects, some materials substantially reduce required injection rates as well as perturbation of stratospheric winds, age of air and stratospheric warming compared to injection of SO2, with the most promising results being shown by 150 nm diamond particles. Uncertainties remain as to whether stratospheric dispersion of solid particles is feasible without formation of agglomerates.https://doi.org/10.1029/2024GL110575solar radiation modificationclimate interventionaerosol microphysicssolid particlesstratospheric heatingoptical properties
spellingShingle S. Vattioni
S. K. Käslin
J. A. Dykema
L. Beiping
T. Sukhodolov
J. Sedlacek
F. N. Keutsch
T. Peter
G. Chiodo
Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
Geophysical Research Letters
solar radiation modification
climate intervention
aerosol microphysics
solid particles
stratospheric heating
optical properties
title Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
title_full Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
title_fullStr Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
title_full_unstemmed Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
title_short Microphysical Interactions Determine the Effectiveness of Solar Radiation Modification via Stratospheric Solid Particle Injection
title_sort microphysical interactions determine the effectiveness of solar radiation modification via stratospheric solid particle injection
topic solar radiation modification
climate intervention
aerosol microphysics
solid particles
stratospheric heating
optical properties
url https://doi.org/10.1029/2024GL110575
work_keys_str_mv AT svattioni microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT skkaslin microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT jadykema microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT lbeiping microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT tsukhodolov microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT jsedlacek microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT fnkeutsch microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT tpeter microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection
AT gchiodo microphysicalinteractionsdeterminetheeffectivenessofsolarradiationmodificationviastratosphericsolidparticleinjection