Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems
We give several sufficient conditions under which the first-order nonlinear discrete Hamiltonian system Δx(n)=α(n)x(n+1)+β(n)|y(n)|μ-2y(n),Δy(n)=-γ(n)|x(n+1)|ν-2x(n+1)-α(n)y(n) has no solution (x(n),y(n)) satisfying condition 0<∑n=-∞+∞[|x(n)|ν+(1+β(n))|y(n)|μ]<+∞, where μ,ν>1 and 1/μ+1/ν=1...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/398681 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554230664134656 |
---|---|
author | Xiaoping Wang |
author_facet | Xiaoping Wang |
author_sort | Xiaoping Wang |
collection | DOAJ |
description | We give several sufficient conditions under which the first-order nonlinear discrete Hamiltonian system Δx(n)=α(n)x(n+1)+β(n)|y(n)|μ-2y(n),Δy(n)=-γ(n)|x(n+1)|ν-2x(n+1)-α(n)y(n) has no solution (x(n),y(n)) satisfying condition 0<∑n=-∞+∞[|x(n)|ν+(1+β(n))|y(n)|μ]<+∞, where μ,ν>1 and 1/μ+1/ν=1 and α(n),β(n), and γ(n) are real-valued functions defined on ℤ. |
format | Article |
id | doaj-art-855d3770d22741b88eb7adac1fc2e7f6 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2013-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-855d3770d22741b88eb7adac1fc2e7f62025-02-03T05:52:02ZengWileyAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/398681398681Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian SystemsXiaoping Wang0Department of Mathematics, Xiangnan College, Chenzhou, Hunan 423000, ChinaWe give several sufficient conditions under which the first-order nonlinear discrete Hamiltonian system Δx(n)=α(n)x(n+1)+β(n)|y(n)|μ-2y(n),Δy(n)=-γ(n)|x(n+1)|ν-2x(n+1)-α(n)y(n) has no solution (x(n),y(n)) satisfying condition 0<∑n=-∞+∞[|x(n)|ν+(1+β(n))|y(n)|μ]<+∞, where μ,ν>1 and 1/μ+1/ν=1 and α(n),β(n), and γ(n) are real-valued functions defined on ℤ.http://dx.doi.org/10.1155/2013/398681 |
spellingShingle | Xiaoping Wang Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems Abstract and Applied Analysis |
title | Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems |
title_full | Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems |
title_fullStr | Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems |
title_full_unstemmed | Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems |
title_short | Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems |
title_sort | nonexistence of homoclinic solutions for a class of discrete hamiltonian systems |
url | http://dx.doi.org/10.1155/2013/398681 |
work_keys_str_mv | AT xiaopingwang nonexistenceofhomoclinicsolutionsforaclassofdiscretehamiltoniansystems |