A Stochastic Restricted Principal Components Regression Estimator in the Linear Model

We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which...

Full description

Saved in:
Bibliographic Details
Main Authors: Daojiang He, Yan Wu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/231506
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553556736999424
author Daojiang He
Yan Wu
author_facet Daojiang He
Yan Wu
author_sort Daojiang He
collection DOAJ
description We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator.
format Article
id doaj-art-852d4460193b4fe197a4a038f6152fc4
institution Kabale University
issn 2356-6140
1537-744X
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series The Scientific World Journal
spelling doaj-art-852d4460193b4fe197a4a038f6152fc42025-02-03T05:53:49ZengWileyThe Scientific World Journal2356-61401537-744X2014-01-01201410.1155/2014/231506231506A Stochastic Restricted Principal Components Regression Estimator in the Linear ModelDaojiang He0Yan Wu1Department of Statistics, Anhui Normal University, Wuhu 241000, ChinaDepartment of Statistics, Anhui Normal University, Wuhu 241000, ChinaWe propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary and sufficient conditions for the superiority of the SRPC estimator over the OME and the PCR estimator are derived in the sense of the mean squared error matrix criterion. Finally, we give a numerical example and a Monte Carlo study to illustrate the performance of the proposed estimator.http://dx.doi.org/10.1155/2014/231506
spellingShingle Daojiang He
Yan Wu
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
The Scientific World Journal
title A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_full A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_fullStr A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_full_unstemmed A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_short A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
title_sort stochastic restricted principal components regression estimator in the linear model
url http://dx.doi.org/10.1155/2014/231506
work_keys_str_mv AT daojianghe astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT yanwu astochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT daojianghe stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel
AT yanwu stochasticrestrictedprincipalcomponentsregressionestimatorinthelinearmodel