Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
The study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Polymer Science |
Online Access: | http://dx.doi.org/10.1155/2020/1239267 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832567458598223872 |
---|---|
author | Faraj Ahmad Abuilaiwi |
author_facet | Faraj Ahmad Abuilaiwi |
author_sort | Faraj Ahmad Abuilaiwi |
collection | DOAJ |
description | The study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst, and concentration of initiator to obtain the maximum yield of graft polymerization. Fiber and copolymer were characterized using SEM and FT-IR spectroscopy to ensure the completion of polymerization. Hydroxylamine hydrochloride was used for treating the grafted copolymers for the preparation of polyamidoxime chelating resin, which was then examined for removing the heavy metal ions. Different resin dosages, contact time, and initial concentrations were used, and the batch technique experiment was utilized. The study also applied the Langmuir and Freundlich isotherm model, and Langmuir was found to be better. The absorption ability was found to be better for polyamidoxime resin for metal ions of cadmium (II), chromium (III), and lead (II). |
format | Article |
id | doaj-art-84e1bf0cdf5e4f5eb22c40fdae8d3d2c |
institution | Kabale University |
issn | 1687-9422 1687-9430 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Polymer Science |
spelling | doaj-art-84e1bf0cdf5e4f5eb22c40fdae8d3d2c2025-02-03T01:01:23ZengWileyInternational Journal of Polymer Science1687-94221687-94302020-01-01202010.1155/2020/12392671239267Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an InitiatorFaraj Ahmad Abuilaiwi0Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi ArabiaThe study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst, and concentration of initiator to obtain the maximum yield of graft polymerization. Fiber and copolymer were characterized using SEM and FT-IR spectroscopy to ensure the completion of polymerization. Hydroxylamine hydrochloride was used for treating the grafted copolymers for the preparation of polyamidoxime chelating resin, which was then examined for removing the heavy metal ions. Different resin dosages, contact time, and initial concentrations were used, and the batch technique experiment was utilized. The study also applied the Langmuir and Freundlich isotherm model, and Langmuir was found to be better. The absorption ability was found to be better for polyamidoxime resin for metal ions of cadmium (II), chromium (III), and lead (II).http://dx.doi.org/10.1155/2020/1239267 |
spellingShingle | Faraj Ahmad Abuilaiwi Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator International Journal of Polymer Science |
title | Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator |
title_full | Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator |
title_fullStr | Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator |
title_full_unstemmed | Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator |
title_short | Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator |
title_sort | removal of cadmium ii chromium iii and lead ii heavy metal ions from water by graft copolymerization of acrylonitrile onto date palm fiber using h2o2 fe as an initiator |
url | http://dx.doi.org/10.1155/2020/1239267 |
work_keys_str_mv | AT farajahmadabuilaiwi removalofcadmiumiichromiumiiiandleadiiheavymetalionsfromwaterbygraftcopolymerizationofacrylonitrileontodatepalmfiberusingh2o2feasaninitiator |