Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator

The study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst...

Full description

Saved in:
Bibliographic Details
Main Author: Faraj Ahmad Abuilaiwi
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2020/1239267
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832567458598223872
author Faraj Ahmad Abuilaiwi
author_facet Faraj Ahmad Abuilaiwi
author_sort Faraj Ahmad Abuilaiwi
collection DOAJ
description The study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst, and concentration of initiator to obtain the maximum yield of graft polymerization. Fiber and copolymer were characterized using SEM and FT-IR spectroscopy to ensure the completion of polymerization. Hydroxylamine hydrochloride was used for treating the grafted copolymers for the preparation of polyamidoxime chelating resin, which was then examined for removing the heavy metal ions. Different resin dosages, contact time, and initial concentrations were used, and the batch technique experiment was utilized. The study also applied the Langmuir and Freundlich isotherm model, and Langmuir was found to be better. The absorption ability was found to be better for polyamidoxime resin for metal ions of cadmium (II), chromium (III), and lead (II).
format Article
id doaj-art-84e1bf0cdf5e4f5eb22c40fdae8d3d2c
institution Kabale University
issn 1687-9422
1687-9430
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series International Journal of Polymer Science
spelling doaj-art-84e1bf0cdf5e4f5eb22c40fdae8d3d2c2025-02-03T01:01:23ZengWileyInternational Journal of Polymer Science1687-94221687-94302020-01-01202010.1155/2020/12392671239267Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an InitiatorFaraj Ahmad Abuilaiwi0Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi ArabiaThe study is aimed at assessing how the date palm wood fibers (DPWF) can be used for the removal of heavy metals from water. The study involved examination of the radical polymerization and graft polymerization parameters such as reaction period, reaction time, monomer volume, amount of the catalyst, and concentration of initiator to obtain the maximum yield of graft polymerization. Fiber and copolymer were characterized using SEM and FT-IR spectroscopy to ensure the completion of polymerization. Hydroxylamine hydrochloride was used for treating the grafted copolymers for the preparation of polyamidoxime chelating resin, which was then examined for removing the heavy metal ions. Different resin dosages, contact time, and initial concentrations were used, and the batch technique experiment was utilized. The study also applied the Langmuir and Freundlich isotherm model, and Langmuir was found to be better. The absorption ability was found to be better for polyamidoxime resin for metal ions of cadmium (II), chromium (III), and lead (II).http://dx.doi.org/10.1155/2020/1239267
spellingShingle Faraj Ahmad Abuilaiwi
Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
International Journal of Polymer Science
title Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
title_full Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
title_fullStr Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
title_full_unstemmed Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
title_short Removal of Cadmium (II), Chromium (III), and Lead (II) Heavy Metal Ions from Water by Graft Copolymerization of Acrylonitrile onto Date Palm Fiber Using H2O2/Fe++ as an Initiator
title_sort removal of cadmium ii chromium iii and lead ii heavy metal ions from water by graft copolymerization of acrylonitrile onto date palm fiber using h2o2 fe as an initiator
url http://dx.doi.org/10.1155/2020/1239267
work_keys_str_mv AT farajahmadabuilaiwi removalofcadmiumiichromiumiiiandleadiiheavymetalionsfromwaterbygraftcopolymerizationofacrylonitrileontodatepalmfiberusingh2o2feasaninitiator