Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound

Objective: To develop a fully end-to-end deep learning framework capable of estimating left ventricular ejection fraction (LVEF), estimating patient age, and classifying patient sex from echocardiographic videos, including videos collected using handheld cardiac ultrasound (HCU). Patients and Method...

Full description

Saved in:
Bibliographic Details
Main Authors: D.M. Anisuzzaman, PhD, Jeffrey G. Malins, PhD, John I. Jackson, PhD, Eunjung Lee, PhD, Jwan A. Naser, MBBS, Behrouz Rostami, PhD, Grace Greason, BA, Jared G. Bird, MD, Paul A. Friedman, MD, Jae K. Oh, MD, Patricia A. Pellikka, MD, Jeremy J. Thaden, MD, Francisco Lopez-Jimenez, MD, MSc, MBA, Zachi I. Attia, PhD, Sorin V. Pislaru, MD, PhD, Garvan C. Kane, MD, PhD
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Mayo Clinic Proceedings: Digital Health
Online Access:http://www.sciencedirect.com/science/article/pii/S294976122500001X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823864251389837312
author D.M. Anisuzzaman, PhD
Jeffrey G. Malins, PhD
John I. Jackson, PhD
Eunjung Lee, PhD
Jwan A. Naser, MBBS
Behrouz Rostami, PhD
Grace Greason, BA
Jared G. Bird, MD
Paul A. Friedman, MD
Jae K. Oh, MD
Patricia A. Pellikka, MD
Jeremy J. Thaden, MD
Francisco Lopez-Jimenez, MD, MSc, MBA
Zachi I. Attia, PhD
Sorin V. Pislaru, MD, PhD
Garvan C. Kane, MD, PhD
author_facet D.M. Anisuzzaman, PhD
Jeffrey G. Malins, PhD
John I. Jackson, PhD
Eunjung Lee, PhD
Jwan A. Naser, MBBS
Behrouz Rostami, PhD
Grace Greason, BA
Jared G. Bird, MD
Paul A. Friedman, MD
Jae K. Oh, MD
Patricia A. Pellikka, MD
Jeremy J. Thaden, MD
Francisco Lopez-Jimenez, MD, MSc, MBA
Zachi I. Attia, PhD
Sorin V. Pislaru, MD, PhD
Garvan C. Kane, MD, PhD
author_sort D.M. Anisuzzaman, PhD
collection DOAJ
description Objective: To develop a fully end-to-end deep learning framework capable of estimating left ventricular ejection fraction (LVEF), estimating patient age, and classifying patient sex from echocardiographic videos, including videos collected using handheld cardiac ultrasound (HCU). Patients and Methods: Deep learning models were trained using retrospective transthoracic echocardiography (TTE) data collected in Mayo Clinic Rochester and surrounding Mayo Clinic Health System sites (training: 6432 studies and internal validation: 1369 studies). Models were then evaluated using retrospective TTE data from the 3 Mayo Clinic sites (Rochester, n=1970; Arizona, n=1367; Florida, n=1562) before being applied to a prospective dataset of handheld ultrasound and TTE videos collected from 625 patients. Study data were collected between January 1, 2018 and February 29, 2024. Results: Models showed strong performance on the retrospective TTE datasets (LVEF regression: root mean squared error (RMSE)=6.83%, 6.53%, and 6.95% for Rochester, Arizona, and Florida cohorts, respectively; classification of LVEF ≤40% versus LVEF > 40%: area under curve (AUC)=0.962, 0.967, and 0.980 for Rochester, Arizona, and Florida, respectively; age: RMSE=9.44% for Rochester; sex: AUC=0.882 for Rochester), and performed comparably for prospective HCU versus TTE data (LVEF regression: RMSE=6.37% for HCU vs 5.57% for TTE; LVEF classification: AUC=0.974 vs 0.981; age: RMSE=10.35% vs 9.32%; sex: AUC=0.896 vs 0.933). Conclusion: Robust TTE datasets can be used to effectively power HCU deep learning models, which in turn demonstrates focused diagnostic images can be obtained with handheld devices.
format Article
id doaj-art-84e08b1479764eda80534ce7fe8c6ec7
institution Kabale University
issn 2949-7612
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series Mayo Clinic Proceedings: Digital Health
spelling doaj-art-84e08b1479764eda80534ce7fe8c6ec72025-02-09T05:01:50ZengElsevierMayo Clinic Proceedings: Digital Health2949-76122025-03-0131100194Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac UltrasoundD.M. Anisuzzaman, PhD0Jeffrey G. Malins, PhD1John I. Jackson, PhD2Eunjung Lee, PhD3Jwan A. Naser, MBBS4Behrouz Rostami, PhD5Grace Greason, BA6Jared G. Bird, MD7Paul A. Friedman, MD8Jae K. Oh, MD9Patricia A. Pellikka, MD10Jeremy J. Thaden, MD11Francisco Lopez-Jimenez, MD, MSc, MBA12Zachi I. Attia, PhD13Sorin V. Pislaru, MD, PhD14Garvan C. Kane, MD, PhD15Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNDepartment of Cardiovascular Medicine, Mayo Clinic, Rochester, MNCorrespondence: Address to Garvan C. Kane, MD, PhD, Chair, Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Gonda 6, Mayo Clinic, 200 First Street SW, Rochester, MN 55905.; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MNObjective: To develop a fully end-to-end deep learning framework capable of estimating left ventricular ejection fraction (LVEF), estimating patient age, and classifying patient sex from echocardiographic videos, including videos collected using handheld cardiac ultrasound (HCU). Patients and Methods: Deep learning models were trained using retrospective transthoracic echocardiography (TTE) data collected in Mayo Clinic Rochester and surrounding Mayo Clinic Health System sites (training: 6432 studies and internal validation: 1369 studies). Models were then evaluated using retrospective TTE data from the 3 Mayo Clinic sites (Rochester, n=1970; Arizona, n=1367; Florida, n=1562) before being applied to a prospective dataset of handheld ultrasound and TTE videos collected from 625 patients. Study data were collected between January 1, 2018 and February 29, 2024. Results: Models showed strong performance on the retrospective TTE datasets (LVEF regression: root mean squared error (RMSE)=6.83%, 6.53%, and 6.95% for Rochester, Arizona, and Florida cohorts, respectively; classification of LVEF ≤40% versus LVEF > 40%: area under curve (AUC)=0.962, 0.967, and 0.980 for Rochester, Arizona, and Florida, respectively; age: RMSE=9.44% for Rochester; sex: AUC=0.882 for Rochester), and performed comparably for prospective HCU versus TTE data (LVEF regression: RMSE=6.37% for HCU vs 5.57% for TTE; LVEF classification: AUC=0.974 vs 0.981; age: RMSE=10.35% vs 9.32%; sex: AUC=0.896 vs 0.933). Conclusion: Robust TTE datasets can be used to effectively power HCU deep learning models, which in turn demonstrates focused diagnostic images can be obtained with handheld devices.http://www.sciencedirect.com/science/article/pii/S294976122500001X
spellingShingle D.M. Anisuzzaman, PhD
Jeffrey G. Malins, PhD
John I. Jackson, PhD
Eunjung Lee, PhD
Jwan A. Naser, MBBS
Behrouz Rostami, PhD
Grace Greason, BA
Jared G. Bird, MD
Paul A. Friedman, MD
Jae K. Oh, MD
Patricia A. Pellikka, MD
Jeremy J. Thaden, MD
Francisco Lopez-Jimenez, MD, MSc, MBA
Zachi I. Attia, PhD
Sorin V. Pislaru, MD, PhD
Garvan C. Kane, MD, PhD
Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
Mayo Clinic Proceedings: Digital Health
title Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
title_full Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
title_fullStr Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
title_full_unstemmed Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
title_short Leveraging Comprehensive Echo Data to Power Artificial Intelligence Models for Handheld Cardiac Ultrasound
title_sort leveraging comprehensive echo data to power artificial intelligence models for handheld cardiac ultrasound
url http://www.sciencedirect.com/science/article/pii/S294976122500001X
work_keys_str_mv AT dmanisuzzamanphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT jeffreygmalinsphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT johnijacksonphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT eunjungleephd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT jwananasermbbs leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT behrouzrostamiphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT gracegreasonba leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT jaredgbirdmd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT paulafriedmanmd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT jaekohmd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT patriciaapellikkamd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT jeremyjthadenmd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT franciscolopezjimenezmdmscmba leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT zachiiattiaphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT sorinvpislarumdphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound
AT garvanckanemdphd leveragingcomprehensiveechodatatopowerartificialintelligencemodelsforhandheldcardiacultrasound