Spectral Functions for the Vector-Valued Fourier Transform

A scalar distribution function σ(s) is called a spectral function for the Fourier transform φ^(s)=∫Reitsφ(t)dt (with respect to an interval I⊂R) if for each function φ∈L2(R) with support in I the Parseval identity ∫Rφ^s2dσ(s)=∫Rφt2dt holds. We show that in the case I=R there exists a unique spectral...

Full description

Saved in:
Bibliographic Details
Main Author: Vadim Mogilevskii
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/9584150
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849403616458178560
author Vadim Mogilevskii
author_facet Vadim Mogilevskii
author_sort Vadim Mogilevskii
collection DOAJ
description A scalar distribution function σ(s) is called a spectral function for the Fourier transform φ^(s)=∫Reitsφ(t)dt (with respect to an interval I⊂R) if for each function φ∈L2(R) with support in I the Parseval identity ∫Rφ^s2dσ(s)=∫Rφt2dt holds. We show that in the case I=R there exists a unique spectral function σ(s)=(1/2π)s, in which case the above Parseval identity turns into the classical one. On the contrary, in the case of a finite interval I=(0,b), there exist infinitely many spectral functions (with respect to I). We introduce also the concept of the matrix-valued spectral function σ(s) (with respect to a system of intervals {I1,I2,…,In}) for the vector-valued Fourier transform of a vector-function φ(t)={φ1(t),φ2(t),…,φn(t)}∈L2(I,Cn), such that support of φj lies in Ij. The main result is a parametrization of all matrix (in particular scalar) spectral functions σ(s) for various systems of intervals {I1,I2,…,In}.
format Article
id doaj-art-84ada48e7aa5454499786d4f67ac2e72
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-84ada48e7aa5454499786d4f67ac2e722025-08-20T03:37:12ZengWileyJournal of Function Spaces2314-88962314-88882018-01-01201810.1155/2018/95841509584150Spectral Functions for the Vector-Valued Fourier TransformVadim Mogilevskii0Poltava V.G. Korolenko National Pedagogical University, Poltava, UkraineA scalar distribution function σ(s) is called a spectral function for the Fourier transform φ^(s)=∫Reitsφ(t)dt (with respect to an interval I⊂R) if for each function φ∈L2(R) with support in I the Parseval identity ∫Rφ^s2dσ(s)=∫Rφt2dt holds. We show that in the case I=R there exists a unique spectral function σ(s)=(1/2π)s, in which case the above Parseval identity turns into the classical one. On the contrary, in the case of a finite interval I=(0,b), there exist infinitely many spectral functions (with respect to I). We introduce also the concept of the matrix-valued spectral function σ(s) (with respect to a system of intervals {I1,I2,…,In}) for the vector-valued Fourier transform of a vector-function φ(t)={φ1(t),φ2(t),…,φn(t)}∈L2(I,Cn), such that support of φj lies in Ij. The main result is a parametrization of all matrix (in particular scalar) spectral functions σ(s) for various systems of intervals {I1,I2,…,In}.http://dx.doi.org/10.1155/2018/9584150
spellingShingle Vadim Mogilevskii
Spectral Functions for the Vector-Valued Fourier Transform
Journal of Function Spaces
title Spectral Functions for the Vector-Valued Fourier Transform
title_full Spectral Functions for the Vector-Valued Fourier Transform
title_fullStr Spectral Functions for the Vector-Valued Fourier Transform
title_full_unstemmed Spectral Functions for the Vector-Valued Fourier Transform
title_short Spectral Functions for the Vector-Valued Fourier Transform
title_sort spectral functions for the vector valued fourier transform
url http://dx.doi.org/10.1155/2018/9584150
work_keys_str_mv AT vadimmogilevskii spectralfunctionsforthevectorvaluedfouriertransform