Velocity and Density Fluctuations in the Quiet Sun Corona

We investigate the properties and relationship between Doppler velocity fluctuations and intensity fluctuations in the off-limb quiet Sun corona. These are expected to reflect the properties of Alfvénic and compressive waves, respectively. The data come from the Coronal Multichannel Polarimeter (COM...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael Hahn, Xiangrong Fu, Stefan J. Hofmeister, Yifan Huang, Alexandros Koukras, Daniel Wolf Savin
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/adc1c0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the properties and relationship between Doppler velocity fluctuations and intensity fluctuations in the off-limb quiet Sun corona. These are expected to reflect the properties of Alfvénic and compressive waves, respectively. The data come from the Coronal Multichannel Polarimeter (COMP). These data were studied using spectral methods to estimate the power spectra, amplitudes, perpendicular correlation lengths, phases, trajectories, dispersion relations, and propagation speeds of both types of fluctuations. We find that most velocity fluctuations are due to Alfvénic waves but that intensity fluctuations come from a variety of sources, likely including fast and slow mode waves, as well as aperiodic variations. The relation between the velocity and intensity fluctuations differs depending on the underlying coronal structure. On short closed loops, the velocity and intensity fluctuations have similar power spectra and speeds. In contrast, on longer nearly radial trajectories, the velocity and intensity fluctuations have different power spectra, with the velocity fluctuations propagating at much faster speeds than the intensity fluctuations. Considering the temperature sensitivity of COMP, these longer structures are more likely to be closed fields lines of the quiet Sun rather than cooler open field lines. That is, we find the character of the interactions of Alfvénic waves and density fluctuations depends on the length of the magnetic loop on which they are traveling.
ISSN:1538-4357