Ensemble-based Semi-Supervised Learning for Hate Speech Detection
Large and accurately labeled textual corpora are vital to developing efficient hate speech classifiers. This paper introduces an ensemble-based semi-supervised learning approach to leverage the availability of abundant social media content. Starting with a reliable hate speech dataset, we train and...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2021-04-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Subjects: | |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/128427 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Large and accurately labeled textual corpora are vital to developing efficient hate speech classifiers. This paper introduces an ensemble-based semi-supervised learning approach to leverage the availability of abundant social media content. Starting with a reliable hate speech dataset, we train and test diverse classifiers that are then used to label a corpus of one million tweets. Next, we investigate several strategies to select the most confident labels from the obtained pseudo labels. We assess these strategies by re-training all the classifiers with the seed dataset augmented with the trusted pseudo-labeled data. Finally, we demonstrate that our approach improves classification performance over supervised hate speech classification methods. |
|---|---|
| ISSN: | 2334-0754 2334-0762 |