Malaria bivalent viral vectored vaccine protects against Plasmodium falciparum and vivax and blocks parasite transmission
Abstract Malaria remains a major infectious disease, with Plasmodium falciparum and Plasmodium vivax often co-endemic, requiring a dual-target vaccine for adequate control. We previously developed monovalent vaccines against P. falciparum or P. vivax using vaccinia virus LC16m8Δ (m8Δ) and adeno-asso...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | npj Vaccines |
| Online Access: | https://doi.org/10.1038/s41541-025-01229-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Malaria remains a major infectious disease, with Plasmodium falciparum and Plasmodium vivax often co-endemic, requiring a dual-target vaccine for adequate control. We previously developed monovalent vaccines against P. falciparum or P. vivax using vaccinia virus LC16m8Δ (m8Δ) and adeno-associated virus type 1 (AAV1). Here, we demonstrate the efficacy of a novel bivalent malaria vaccine against P. falciparum and P. vivax. The m8Δ vaccine harbors two gene cassettes encoding Pfs25-PfCSP and Pvs25-PvCSP fusion proteins, while the AAV1 vaccine includes two recombinant AAV1s carrying one of these cassettes as a mixture. Heterologous m8Δ-prime and AAV1-boost immunization provided 70% protection against both PfCSP/Pb and PvCSP/Pb transgenic sporozoites. Moreover, a membrane feeding assay using P. vivax isolates from infected patients in the Brazilian Amazon showed 90% transmission-blocking efficacy. The bivalent vaccine outperformed monovalent combinations, maintaining immune responses for over 7 months, and shows promise for malaria control and elimination. |
|---|---|
| ISSN: | 2059-0105 |