Solution-Processed Bulk Heterojunction Solar Cells with Silyl End-Capped Sexithiophene

We fabricated solution-processed organic photovoltaic cells (OPVs) using substituted two sexithiophenes, a,w-bis(dimethyl-n-octylsilyl)sexithiophene (DSi-6T) and a,w-dihexylsexithiophene (DH-6T), as electron donors, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor. Solut...

Full description

Saved in:
Bibliographic Details
Main Authors: Jung Hei Choi, Mohamed E. El-Khouly, Taehee Kim, Youn-Su Kim, Ung Chan Yoon, Shunichi Fukuzumi, Kyungkon Kim
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2013/843615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We fabricated solution-processed organic photovoltaic cells (OPVs) using substituted two sexithiophenes, a,w-bis(dimethyl-n-octylsilyl)sexithiophene (DSi-6T) and a,w-dihexylsexithiophene (DH-6T), as electron donors, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor. Solution-processed OPVs using DH-6T and DSi-6T showed good photovoltaic properties in spite of their poor solubility. The best performance was observed on DSi-6T : PCBM 1 : 5 (w/w) blend cell with an open circuit voltage (Voc) of 0.63 V, short circuit current density (Jsc) of 1.34 mA/cm2, fill factor (FF) of 55%, and power conversion efficiency of 0.44% under AM 1.5 G illumination. Although DH-6T has higher hole mobility than DSi-6T, the DSi-6T : PCBM blend cell showed higher hole mobility than DH-6T : PCBM cell. Therefore, DSi-6T cell showed higher device performance than DH-6T cell due to its silyl substitutions, which lead to the increase of the solubility. The incorporation of solution-processed TiO2 interfacial layer in the DSi-6T : PCBM devices significantly enhances FF due to the reduced charge recombination near active layer/Al interface.
ISSN:1110-662X
1687-529X