Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2&...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Batteries |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-0105/11/7/268 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849246332009578496 |
|---|---|
| author | Michael Herraiz Saida Moumen Kevin Lemoine Laurent Jouffret Katia Guérin Elodie Petit Nathalie Gaillard Laure Bertry Reka Toth Thierry Le Mercier Valérie Buissette Marc Dubois |
| author_facet | Michael Herraiz Saida Moumen Kevin Lemoine Laurent Jouffret Katia Guérin Elodie Petit Nathalie Gaillard Laure Bertry Reka Toth Thierry Le Mercier Valérie Buissette Marc Dubois |
| author_sort | Michael Herraiz |
| collection | DOAJ |
| description | After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2</sub>(XO<sub>4</sub>)<sub>3</sub> are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li<sup>+</sup> ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO<sub>2</sub> present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li<sub>6,4</sub>Al<sub>0,2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. |
| format | Article |
| id | doaj-art-8421a4abc09248ae87bb83d7905bbdd8 |
| institution | Kabale University |
| issn | 2313-0105 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Batteries |
| spelling | doaj-art-8421a4abc09248ae87bb83d7905bbdd82025-08-20T03:58:31ZengMDPI AGBatteries2313-01052025-07-0111726810.3390/batteries11070268Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion BatteryMichael Herraiz0Saida Moumen1Kevin Lemoine2Laurent Jouffret3Katia Guérin4Elodie Petit5Nathalie Gaillard6Laure Bertry7Reka Toth8Thierry Le Mercier9Valérie Buissette10Marc Dubois11Institut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceSolvay, 9 rue des Cuirassiers, 69003 Lyon, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceAfter reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2</sub>(XO<sub>4</sub>)<sub>3</sub> are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li<sup>+</sup> ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO<sub>2</sub> present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li<sub>6,4</sub>Al<sub>0,2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive.https://www.mdpi.com/2313-0105/11/7/268garnet-type oxideslithium ion batterysolid electrolytefluorinationsurface treatment |
| spellingShingle | Michael Herraiz Saida Moumen Kevin Lemoine Laurent Jouffret Katia Guérin Elodie Petit Nathalie Gaillard Laure Bertry Reka Toth Thierry Le Mercier Valérie Buissette Marc Dubois Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery Batteries garnet-type oxides lithium ion battery solid electrolyte fluorination surface treatment |
| title | Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery |
| title_full | Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery |
| title_fullStr | Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery |
| title_full_unstemmed | Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery |
| title_short | Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery |
| title_sort | surface fluorination for the stabilization in air of garnet type oxide solid electrolyte for lithium ion battery |
| topic | garnet-type oxides lithium ion battery solid electrolyte fluorination surface treatment |
| url | https://www.mdpi.com/2313-0105/11/7/268 |
| work_keys_str_mv | AT michaelherraiz surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT saidamoumen surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT kevinlemoine surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT laurentjouffret surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT katiaguerin surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT elodiepetit surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT nathaliegaillard surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT laurebertry surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT rekatoth surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT thierrylemercier surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT valeriebuissette surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery AT marcdubois surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery |