Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery

After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2&...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette, Marc Dubois
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/11/7/268
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246332009578496
author Michael Herraiz
Saida Moumen
Kevin Lemoine
Laurent Jouffret
Katia Guérin
Elodie Petit
Nathalie Gaillard
Laure Bertry
Reka Toth
Thierry Le Mercier
Valérie Buissette
Marc Dubois
author_facet Michael Herraiz
Saida Moumen
Kevin Lemoine
Laurent Jouffret
Katia Guérin
Elodie Petit
Nathalie Gaillard
Laure Bertry
Reka Toth
Thierry Le Mercier
Valérie Buissette
Marc Dubois
author_sort Michael Herraiz
collection DOAJ
description After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2</sub>(XO<sub>4</sub>)<sub>3</sub> are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li<sup>+</sup> ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO<sub>2</sub> present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li<sub>6,4</sub>Al<sub>0,2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive.
format Article
id doaj-art-8421a4abc09248ae87bb83d7905bbdd8
institution Kabale University
issn 2313-0105
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Batteries
spelling doaj-art-8421a4abc09248ae87bb83d7905bbdd82025-08-20T03:58:31ZengMDPI AGBatteries2313-01052025-07-0111726810.3390/batteries11070268Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion BatteryMichael Herraiz0Saida Moumen1Kevin Lemoine2Laurent Jouffret3Katia Guérin4Elodie Petit5Nathalie Gaillard6Laure Bertry7Reka Toth8Thierry Le Mercier9Valérie Buissette10Marc Dubois11Institut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceSolvay, 9 rue des Cuirassiers, 69003 Lyon, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceCentre de Recherche & Innovation, Syensqo, 52 Rue de la Haie Coq, 93300 Aubervilliers, FranceInstitut de Chimie de Clermont-Ferrand (UMR 6296), Université Clermont Auvergne, CNRS, BP 10448, F-63000 Clermont-Ferrand, FranceAfter reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A<sub>3</sub>B<sub>2</sub>(XO<sub>4</sub>)<sub>3</sub> are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li<sup>+</sup> ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO<sub>2</sub> present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li<sub>6,4</sub>Al<sub>0,2</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive.https://www.mdpi.com/2313-0105/11/7/268garnet-type oxideslithium ion batterysolid electrolytefluorinationsurface treatment
spellingShingle Michael Herraiz
Saida Moumen
Kevin Lemoine
Laurent Jouffret
Katia Guérin
Elodie Petit
Nathalie Gaillard
Laure Bertry
Reka Toth
Thierry Le Mercier
Valérie Buissette
Marc Dubois
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
Batteries
garnet-type oxides
lithium ion battery
solid electrolyte
fluorination
surface treatment
title Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
title_full Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
title_fullStr Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
title_full_unstemmed Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
title_short Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
title_sort surface fluorination for the stabilization in air of garnet type oxide solid electrolyte for lithium ion battery
topic garnet-type oxides
lithium ion battery
solid electrolyte
fluorination
surface treatment
url https://www.mdpi.com/2313-0105/11/7/268
work_keys_str_mv AT michaelherraiz surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT saidamoumen surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT kevinlemoine surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT laurentjouffret surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT katiaguerin surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT elodiepetit surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT nathaliegaillard surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT laurebertry surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT rekatoth surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT thierrylemercier surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT valeriebuissette surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery
AT marcdubois surfacefluorinationforthestabilizationinairofgarnettypeoxidesolidelectrolyteforlithiumionbattery