Exercise training exerts beneficial effects on Alzheimer’s disease through multiple signaling pathways

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive dysfunction that affects millions of people worldwide, placing a massive burden on families and economies. Exercise training can effectively reduce the prevalence of AD and alleviate its sy...

Full description

Saved in:
Bibliographic Details
Main Authors: Jihe Kang, Mei Liu, Qiang Yang, Xiangji Dang, Qun Li, Ting Wang, Bin Qiu, Yibao Zhang, Xudong Guo, Xiaoling Li, Yan Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-05-01
Series:Frontiers in Aging Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnagi.2025.1558078/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive dysfunction that affects millions of people worldwide, placing a massive burden on families and economies. Exercise training can effectively reduce the prevalence of AD and alleviate its symptoms through the modulation of multiple signaling pathways involved in the pathophysiological process of AD, including the PI3K/Akt, Wnt/β-catenin, AMPK-related, MAPK, NF-κB, PINK1-PARKIN, JAK/STAT, and TREM2 signaling pathways. Different signaling pathways also crosstalk with each other through different targets to inhibit the formation of Amyloid β (Aβ) plaques, reduce the level of hyperphosphorylated tau protein, reduce apoptosis, relieve neuroinflammation, reduce autophagy dysfunction, and ultimately improve cognitive impairment in AD patients. This review summarizes the pathophysiological processes of AD affected by exercise training through different signaling pathways. We further provide a reference for the future development of new effective AD prevention and treatment targets to develop promising personalized, combined intervention strategies.
ISSN:1663-4365