Dynamics Analysis of a Mathematical Model for New Product Innovation Diffusion

In this paper, a mathematical model with time-delay-related parameters and media coverage to describe the diffusion process of new products is proposed, in which the time-delay-related parameters denote the stage in which potential customers decide whether to adopt a new product. Then, the stability...

Full description

Saved in:
Bibliographic Details
Main Authors: Chunru Li, Zujun Ma
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/4716064
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a mathematical model with time-delay-related parameters and media coverage to describe the diffusion process of new products is proposed, in which the time-delay-related parameters denote the stage in which potential customers decide whether to adopt a new product. Then, the stability and the Hopf bifurcation of the proposed model are analyzed in detail. The center manifold theorem and the normal form theory are used to investigate the stability of the bifurcating periodic solution. Moreover, a numerical simulation is conducted to investigate the difference between the model with delay-dependent parameters and that with delay-independent parameters. The results show that there is significant difference between the two models.
ISSN:1026-0226
1607-887X